Origin of Carbon-Enhanced Metal-Poor (CEMP) Stars

Young Sun Lee
(Chungnam National University)

Outline

\square Metal-poor stars
\square Discovery of carbon-enhanced metal-poor (CEMP) stars
\square Properties and origin of CEMP stars
\square High-resolution spectroscopy with Gemini/GRACES

Metal-Poor (MP) Stars

$\square H K$ and HES(Hamburg ESO) surveys
\checkmark Discovered several thousand very metal-poor (VMP; [Fe/H] < -2.0) stars
\square Many tens of thousand VMP stars
\checkmark SDSS (Sloan Digital Sky Survey)
\checkmark SEGUE (Sloan Extension for Galactic Understanding and Exploration)
\checkmark Ongoing SDSS IV (e.g., BOSS \& eBOSS)
\square Many more to come from LAMOST
\checkmark LArges Multi-Object fiber Spectroscopic Telescope (LAMOST)
-About 8 million stellar spectra will be obtained

Known MP Stars - Pre and Post SDSSISEGUE

\square Nomenclature by Beers \& Christlieb (2005)

Name	Metallicity	Pre	Post
Metal-Poor (MP)	$[\mathrm{Fe} / \mathrm{H}]<-1.0$	15,000	$150,000+$
Very Metal-Poor (VMP)	$[\mathrm{Fe} / \mathrm{H}]<-2.0$	3,000	$30,000+$
Extremely Metal-Poor (EMP) $[\mathrm{Fe} / \mathrm{H}]<-3.0$	400	$1000+$	
Ultra Metal-Poor (UMP)	$[\mathrm{Fe} / \mathrm{H}]<-4.0$	6	21
Hyper Metal-Poor (HMP)	$[\mathrm{Fe} / \mathrm{H}]<-5.0$	2	5
Mega Metal-Poor (MMP)	$[\mathrm{Fe} / \mathrm{H}]<-6.0$	0	1
Septa Metal-Poor (SMP)	$[\mathrm{Fe} / \mathrm{H}]<-7.0$	0	1
Octa Metal-Poor (OMP)	$[\mathrm{Fe} / \mathrm{H}]<-8.0$	0	0
Giga Metal-Poor (GMP)	$[\mathrm{Fe} / \mathrm{H}]<-9.0$	0	0
Note that EMP stars potentially include additional UMP, HMP, MMP, SMP, OMP, or GMP stars			

Abundance Patterns of VMP Stars

\square Detailed chemical-abundance analyses of VMP ($[\mathrm{Fe} / \mathrm{H}]<-2.0$) stars from the HK \& HES surveys revealed:
\checkmark Most VMP stars exhibit similar abundance pattern
\checkmark But, there are peculiar objects with strong enrichments or deficiencies of light elements such as C, N, O, Na, Mg, Al, Si, Ca, etc.
\checkmark Objects with carbon enhanced are the most common variety

Carbon-Enhanced Metal-Poor (CEMP) Stars

ロCEMP

\checkmark Carbon-Enhanced Metal-Poor (CEMP)
\checkmark CEMP stars defined by [Fe/H] <-1.0 and [C/Fe] > +1.0 (or [C/Fe] > +0.7) (Beers \& Christlieb 2005)
$\square[\mathrm{C} / \mathrm{Fe}]$
\checkmark Coin a term "Carbonicity" similar to Metallicity ([Fe/H]) (e.g., Carollo et al. 2012)

Frequency of CEMP Stars

\square Largest list (~ 4800) of CEMP stars ever made from SDSS/SEGUE
\square Fraction of CEMP stars increases as the metallicity decreases
\checkmark Generally CEMP star frequencies are:
$\cdot 20 \%$ for $[\mathrm{Fe} / \mathrm{H}]<-2.5$
$\cdot 30 \%$ for $[\mathrm{Fe} / \mathrm{H}]<-3.0$ EMP
-40\% for $[\mathrm{Fe} / \mathrm{H}]<-3.5$
$\bullet 75 \%$ for $[\mathrm{Fe} / \mathrm{H}]<-4.0$ UMP
$\bullet 100 \%$ for $[\mathrm{Fe} / \mathrm{H}]<-5.0 \mathrm{HMP}$
\square What does this mean?
\rightarrow A large amount of carbon was produced in the early history of the Milky Way

\rightarrow Then, a question arises "how?"

Subclasses of CEMP Stars

\square Another interesting aspect of CEMP stars is that they have different enhancement of n-capture elements
\square CEMP Stars are further divided into four groups depending on the enhancement of the s-process element (Ba) or r-process element (Eu)

Carbon-enhanced metal-poor stars

CEMP	$[\mathrm{C} / \mathrm{Fe}]>+1.0$
CEMP-r	$[\mathrm{C} / \mathrm{Fe}]>+1.0$ and $[\mathrm{Eu} / \mathrm{Fe}]>+1.0$
CEMP-s	$[\mathrm{C} / \mathrm{Fe}]>+1.0,[\mathrm{Ba} / \mathrm{Fe}]>+1.0$, and $[\mathrm{Ba} / \mathrm{Eu}]>+0.5$
CEMP-r $/ \mathrm{s}$	$[\mathrm{C} / \mathrm{Fe}]>+1.0$ and $0.0<[\mathrm{Ba} / \mathrm{Eu}]<+0.5$
CEMP-no	$[\mathrm{C} / \mathrm{Fe}]>+1.0$ and $[\mathrm{Ba} / \mathrm{Fe}]<0$

Note that CEMP-s and CEMP-no stars account for over 95\%
\square What does this imply?
\rightarrow Indicative of different astrophysical sites to produce these objects at early times

Properties and Origin of CEMP Subclasses

\square Various subclasses of CEMP stars
\checkmark CEMP stars in the Galaxy are likely produced by multiple mechanisms
\checkmark Need to investigate properties of each subclass

	CEMP-s	CEMP-no	CEMP-r/s	CEMP-r
Fraction	$>80 \%$	$\sim 15 \%$	$<2 \%$	$<2 \%$
Metallicity range	$[\mathrm{Fe} / \mathrm{H}]>-3.0$	$[\mathrm{Fe} / \mathrm{H}]<-3.0$	$[\mathrm{Fe} / \mathrm{H}]>-3.0$	$[\mathrm{Fe} / \mathrm{H}]>-3.0$
RV variation	Yes (>80\%)	No (>83\%)	Yes	No (?)
Possible progenitor	Low mass Pop II	High mass Pop III	Low mass Pop II	Intermediate mass Pop II (?)
Favored mechanism	AGB binary mass transfer	Spinstars Faint SNe	AGB binary mass transfer	SNe (?)

Norris et al. (2013)

Recent Development on CEMP-no Stars

\square More separation on CEMP-no stars
-Group I - CEMP-s, -r, -r/s
\checkmark Associated with Pop II AGB stars or SNe -Group II - CEMP-no
\checkmark Correlation of A(C) with [Fe/H]
\checkmark High mass Pop III faint SN progenitors?
-GGroup III - CEMP-no
\checkmark No correlation of $\mathrm{A}(\mathrm{C})$ with $[\mathrm{Fe} / \mathrm{H}]$
\checkmark Smaller numbers relative to Group II
\checkmark High mass Pop III spinstar progenitors ?

\rightarrow At least two possible progenitors exist for CEMP-no stars !

Recent Development on CEMP-no Stars

\square Characterization of progenitors for Group II and Group III
\checkmark Need more detailed abundances for a larger number of UMP $([\mathrm{Fe} / \mathrm{H}]<-4.0)$ stars
\rightarrow High-resolution spectroscopy with large telescopes comes into play
\checkmark Require further elaborate theoretical models to explain abundance patterns

Search for UMP Stars with Gemini/GRACES

\square Gemini/GRACES observation of candidates with $[\mathrm{Fe} / \mathrm{H}]<-4.0$
\checkmark Targets were selected from the SDSS
\checkmark Selection criteria
$\bullet[\mathrm{Fe} / \mathrm{H}]<-3.5$ measured from Ca II K line -4500 < $T_{\text {eff }}<6500 \mathrm{~K}$
\checkmark Six candidates and one reference star were observed
\checkmark Two fiber mode
-Resolving power of $R \sim 40,000$
\checkmark Data reduction \& abundance analysis
$\cdot \mathrm{Li}, \mathrm{C}, \mathrm{O}, \mathrm{Na}, \mathrm{Mg}, \mathrm{Ti}, \mathrm{Cr}, \mathrm{Fe}, \mathrm{Sr}, \mathrm{Ba}, \mathrm{Eu}$, etc.
-Characterization of progenitors of these objects

Search for UMP Stars with Gemini/GRACES

DPreliminary results from Gemini/GRACES spectra - stellar parameters
\checkmark Reference star: 3214-54866-429
$\cdot T_{\text {eff }}=5467, \log g=3.2,[\mathrm{Fe} / \mathrm{H}]=-4.34$ (Placco et al. 2015)

3214-54866-429, T/G/M: 5450/3.27/-4.55

\checkmark Identified five of six stars as UMP stars
\checkmark Detailed chemical abundance analysis is underway

Looking Forward for GMT

\square Need to expand the number of UMP $([\mathrm{Fe} / \mathrm{H}]<-4.0)$ stars
DLots of faint UMP candidates in SDSS/LAMOST
\checkmark Mostly too faint ($g>17$) for 8~10m class telescopes
\rightarrow Really good targets for GMT/G-CLEF
DDetailed abundance analysis from high-resolution follow-ups
\checkmark Establish the accurate frequency of CEMP stars as a function of [Fe/H]
\rightarrow Possible to infer the initial mass function (IMF)
\checkmark Provide more stringent constraints to the formation models of CEMP subclasses
\checkmark Understand nucleosynthesis of heavy elements in the Pop III stars
-Gemini Korean time is a good opportunity for training young Korean astronomers with high-resolution stellar spectroscopy in this field $\boldsymbol{\rightarrow}$ preparation for the GMT

