Origin of Carbon-Enhanced Metal-Poor (CEMP) Stars

Young Sun Lee (Chungnam National University)

중대형 망원경 사용자 Workshop at KASI, March 3, 2017

Metal-poor stars

- Discovery of carbon-enhanced metal-poor (CEMP) stars
- Properties and origin of CEMP stars
- □High-resolution spectroscopy with Gemini/GRACES

Metal-Poor (MP) Stars

HK and HES(Hamburg ESO) surveys

 Discovered several thousand very metal-poor (VMP; [Fe/H] < -2.0) stars

Many tens of thousand VMP stars

SDSS (Sloan Digital Sky Survey)

 SEGUE (Sloan Extension for Galactic Understanding and Exploration)

✓ Ongoing SDSS IV (e.g., BOSS & eBOSS)

Many more to come from LAMOST

 LArges Multi-Object fiber Spectroscopic Telescope (LAMOST)

•About 8 million stellar spectra will be obtained

Known MP Stars – Pre and Post SDSS/SEGUE

□Nomenclature by Beers & Christlieb (2005)

Name	Metallicity	Pre	Post	
Metal-Poor (MP)	[Fe/H] < -1.0	15,000	150,000+	
Very Metal-Poor (VMP)	[Fe/H] < -2.0	3,000	30,000+	
Extremely Metal-Poor (EMP)	[Fe/H] < -3.0	400	1000+	
Ultra Metal-Poor (UMP)	[Fe/H] < -4.0	6	21	
Hyper Metal-Poor (HMP)	[Fe/H] < -5.0	2	5	
Mega Metal-Poor (MMP)	[Fe/H] < -6.0	0	1	• +
Septa Metal-Poor (SMP)	[Fe/H] < -7.0	0	1	501
Octa Metal-Poor (OMP)	[Fe/H] < -8.0	0	0	er
Giga Metal-Poor (GMP)	[Fe/H] < -9.0	0	0	Aft
Note that EMP stars potentia or GMP stars	lly include add	itional UMP, HI	MP, MMP, SN	1P, OMP,

Abundance Patterns of VMP Stars

- Detailed chemical-abundance analyses of VMP ([Fe/H] < -2.0) stars from the HK & HES surveys revealed:
 - Most VMP stars exhibit similar abundance pattern
 - But, there are peculiar objects with strong enrichments or deficiencies of light elements such as C, N, O, Na, Mg, Al, Si, Ca, etc.
 - Objects with carbon enhanced are the most common variety

Carbon-Enhanced Metal-Poor (CEMP) Stars

- Carbon-Enhanced Metal-Poor (CEMP)
- CEMP stars defined by [Fe/H] < -1.0 and [C/Fe] > +1.0 (or [C/Fe] > +0.7) (Beers & Christlieb 2005)

□[C/Fe]

Coin a term "Carbonicity" similar to Metallicity ([Fe/H]) (e.g., Carollo et al. 2012)

Frequency of CEMP Stars

Largest list (~4800) of CEMP stars ever made from SDSS/SEGUE

□Fraction of CEMP stars increases as the metallicity decreases

✓ Generally CEMP star frequencies are:

•20% for [Fe/H] < -2.5

•30% for [Fe/H] < -3.0 EMP

•40% for [Fe/H] < -3.5

•75% for [Fe/H] < -4.0 UMP

•100% for [Fe/H] < -5.0 HMP

□What does this mean?

→ A large amount of carbon was produced in the early history of the Milky Way

➔ Then, a question arises "how?"

Subclasses of CEMP Stars

Another interesting aspect of CEMP stars is that they have different enhancement of n-capture elements

CEMP Stars are further divided into four groups depending on the enhancement of the s-process element (Ba) or r-process element (Eu)

Carbon-enhanced metal-poor stars

CEMP-r [C/Fe] > +1.0 and [Eu/Fe] > +1.0

CEMP-s [C/Fe] > +1.0, [Ba/Fe] > +1.0, and [Ba/Eu] > +0.5

CEMP-r/s [C/Fe] > +1.0 and 0.0 < [Ba/Eu] < +0.5

CEMP-no [C/Fe] > +1.0 and [Ba/Fe] < 0

Note that CEMP-s and CEMP-no stars account for over 95%

□What does this imply?

→ Indicative of different astrophysical sites to produce these objects at early times

Properties and Origin of CEMP Subclasses

□ Various subclasses of CEMP stars

- CEMP stars in the Galaxy are likely produced by multiple mechanisms
- Need to investigate properties of each subclass

Recent Development on CEMP-no Stars

At least two possible progenitors exist for CEMP-no stars !

10

20

30

 $A(C)=6.28 (\sigma=0.49)$

[C/Fe]=0.

-2

Reported A(C)

Histogram

9

A(C)

Recent Development on CEMP-no Stars

- Characterization of progenitors for Group II and Group III
 - Need more detailed abundances for a larger number of UMP ([Fe/H] < -4.0) stars
 - High-resolution spectroscopy with large telescopes comes into play
 - Require further elaborate theoretical models to explain abundance patterns

Search for UMP Stars with Gemini/GRACES

Gemini/GRACES observation of candidates with [Fe/H] < -4.0

- Targets were selected from the SDSS
- ✓ Selection criteria

•[Fe/H] < -3.5 measured from Ca II K line •4500 < $T_{\rm eff}$ < 6500 K

 Six candidates and one reference star were observed

✓ Two fiber mode

•Resolving power of *R*~40,000

Data reduction & abundance analysis

•Li, C, O, Na, Mg, Ti, Cr, Fe, Sr, Ba, Eu, etc.

•Characterization of progenitors of these objects

Search for UMP Stars with Gemini/GRACES

Preliminary results from Gemini/GRACES spectra – stellar parameters

✓ Reference star: 3214-54866-429

•*T*_{eff}=5467, log *g*=3.2, [Fe/H] = -4.34 (Placco et al. 2015)

✓ Identified five of six stars as UMP stars

Detailed chemical abundance analysis is underway

Looking Forward for GMT

□Need to expand the number of UMP ([Fe/H] < -4.0) stars

- Lots of faint UMP candidates in SDSS/LAMOST
 - ✓ Mostly too faint (g > 17) for 8~10m class telescopes
 - → Really good targets for GMT/G-CLEF

Detailed abundance analysis from high-resolution follow-ups

- Establish the accurate frequency of CEMP stars as a function of [Fe/H]
 - → Possible to infer the initial mass function (IMF)
- Provide more stringent constraints to the formation models of CEMP subclasses
- Understand nucleosynthesis of heavy elements in the Pop III stars

□Gemini Korean time is a good opportunity for training young Korean astronomers with high-resolution stellar spectroscopy in this field → preparation for the GMT