Subscribe to GMT News feed GMT News
Updated: 21 hours 33 min ago

Engineering Marvel: Sixth Mirror Cast for Giant Magellan Telescope

Sat, 03/06/2021 - 00:59

The 8.4-meter mirror joins five of the world’s largest mirrors previously cast for the Giant Magellan Telescope, one of the world’s largest and most anticipated extremely large telescopes.

PASADENA, CA — The Giant Magellan Telescope announces fabrication of the sixth of seven of the world’s largest monolithic mirrors. These mirrors will allow astronomers to see farther into the universe with more detail than any other optical telescope before. The sixth 8.4-meter (27.5 feet) mirror — about two stories high when standing on edge — is being fabricated at the University of Arizona’s Richard F. Caris Mirror Lab and will take nearly four years to complete. The mirror casting is considered a marvel of modern engineering and is usually celebrated with a large in-person event with attendees from all over the world. Due to the coronavirus pandemic, work on the sixth mirror began behind closed doors to protect the health of the 10-person mirror casting team at the lab.

The Giant Magellan Telescope has seven primary mirrors arranged in a flower pattern array. The mirrors are the largest in the world. Credit: Giant Magellan Telescope – GMTO Corporation.

“The most important part of a telescope is its light-collecting mirror,” said James Fanson, Project Manager of the Giant Magellan Telescope. “The larger the mirror, the deeper we can see into the universe and the more detail we can observe. The Giant Magellan Telescope’s unique primary mirror design consists of seven of the world’s largest mirrors. Casting the sixth mirror is a major step toward completion. Once operational, the Giant Magellan Telescope will produce images ten times sharper than the Hubble Space Telescope. The discoveries these mirrors will make will transform our understanding of the universe.”

The process of casting the giant mirror at Arizona’s Richard F. Caris Mirror Lab involves melting nearly 20 tons (38,490 pounds) of high-purity, low-expansion, borosilicate glass (called E6 glass) into the world’s only spinning furnace designed to cast giant mirrors for telescopes. At the peak of the melting process, the furnace spins at five revolutions per minute, heating the glass to 1,165 degrees Celsius (2,129 F) for approximately five hours until it liquefies into the mold. The peak temperature event is called “high fire” and will occur on March 6, 2021. The mirror then enters a one month annealing process where the glass is cooled while the furnace spins at a slower rate in order to remove internal stresses and toughen the glass. It takes another 1.5 months to cool to room temperature. This “spin cast” process gives the mirror surface its special parabolic shape. Once cooled, the mirror will be polished for two years before reaching an optical surface precision of less than one thousandth of the width of a human hair or five times smaller than a single coronavirus particle.

This timelapse shows several stages of the mirror casting process for segment five, including creating the light-weighted mirror mold, loading nearly 20 tons of glass into the mold, and the furnace spinning during “high fire.” Credit: Richard F. Caris Mirror Lab, The University of Arizona and the Giant Magellan Telescope – GMTO Corporation.

“I am tremendously proud of how the operations of the mirror lab have adapted to the pandemic, allowing our talented and dedicated members of the Richard F. Caris Mirror Lab to safely continue to produce the mirrors for the Giant Magellan Telescope,” said Buell Jannuzi, Director of Steward Observatory and Head of the Department of Astronomy at the University of Arizona.

With the first two giant mirrors completed and in storage in Tucson, Arizona, the sixth mirror joins three others in various stages of production at the mirror lab. The third mirror’s front surface polishing has achieved 70 nanometer accuracy and is less than one year from completion. The fourth mirror has completed rear surface polishing, and load spreaders are being attached to allow the mirror to be manipulated during operation. The fifth mirror was cast in November 2017, and the seventh mirror is expected to be cast in 2023. In addition, an eighth spare mirror is planned to be made that can be swapped in when another mirror requires maintenance.

In the late 2020s, the giant mirrors will be transported more than 8,100 kilometers (5,000 miles) to the Giant Magellan Telescope’s future home in the Chilean Atacama Desert at Las Campanas Observatory more than 2,500 meters (8,200 feet) above sea level. The site is known for being one of the best astronomical sites on the planet, with its clear skies, low light pollution, and stable airflow producing exceptionally sharp images. Additionally, the site’s southern hemisphere location gives the extremely large telescope access to the center of the Milky Way, which is of interest for many reasons, including the fact that it is the home to the nearest supermassive black hole, as well as many of the most interesting nearby galaxies. The southern hemisphere is also home to some of the most powerful observatories working at other wavelengths, making it the ideal location for synergistic scientific observations.

This video shows the Giant Magellan Telescope’s construction site on July 02, 2019 during the morning of the solar eclipse. Credit: Giant Magellan Telescope – GMTO Corporation.

Once the Giant Magellan Telescope becomes fully operational, its seven mirror-array will have a total light collecting area of 368 square meters (3,961 square feet) — enough to see the torch engraved on a dime from nearly 160 kilometers (100 miles) away. Such viewing power is ten times greater than the famed Hubble Space Telescope and four times greater than the highly anticipated James Webb Space Telescope, expected to launch in late 2021. The mirrors are also a crucial part of the optical design that allows the Giant Magellan Telescope to have the widest field of view of any extremely large telescope (ELT) in the 30-meter class. The unique optical design will make the Giant Magellan Telescope the most optically efficient ELT when it comes to making use of every photon of light that the mirrors collect — only two reflections are required to direct light to the wide field instruments and only three reflections to provide light to the instruments that use small fields of view and the highest possible spatial resolutions.

“This unprecedented combination of light gathering power, efficiency, and image resolution will enable us to make new discoveries across all fields of astronomy, particularly fields that require the highest spatial and spectral resolutions, like the search for other Earths,” said Rebecca Bernstein, Chief Scientist of the Giant Magellan Telescope. “We will have unique capabilities for studying planets at high resolution, which is the key to understanding if a planet has a rocky composition like our Earth, if it contains liquid water, and if its atmosphere contains the right combination of molecules to signal the presence of life.”

The Giant Magellan Telescope project is the work of a distinguished international consortium of leading universities and science institutions. For more about the Giant Magellan Telescope, visit gmto.org.

###

Media Contact
Ryan Kallabis
Director of Communications
rkallabis@gmto.org
(626) 204-0554

Multimedia Resources
Multimedia from the release and media usage statement are available from the GMTO Corporation here and from the University of Arizona here until March 20, 2021. Assets may not appear uncredited. Unless otherwise noted in media usage statement, credit line must be given as follows: Giant Magellan Telescope – GMTO Corporation.

Categories: GMT News

Diciembre 2020 – Español

Thu, 12/31/2020 - 03:55

Puedes ir directo al tema que te interesa en los siguientes enlaces:

El 2020 para GMTO

El 2020 fue un año de progresos y desafíos para el Telescopio Magallanes Gigante.

Comenzamos el año formando parte de la sesión informativa sobre el Programa del Telescopio Extremadamente Grande de los Estados Unidos (US-ELTP, por su sigla en inglés) ante la Sociedad Astronómica Americana (AAS). Este programa busca otorgar a la comunidad científica estadounidense un amplio acceso al Telescopio Magallanes Gigante mediante la participación del gobierno de los Estados Unidos. La respuesta de la comunidad científica fue muy positiva.

Más tarde participamos en una sesión informativa ante el Panel de Observaciones Ópticas e Infrarrojas desde la Tierra, de la Encuesta Decenal de los Estados Unido. La Encuesta Decenal establecerá las prioridades científicas del gobierno de los Estados Unidos durante los próximos diez años. Nuestro informe fue bien recibido por el Panel e incluso fue reseñado por The New York Times.

Luego irrumpió la pandemia del coronavirus, que transformó nuestras vidas y nos obligó a trabajar de un modo muy diferente. GMTO Corporation respondió rápidamente cerrando las oficinas de Pasadena y Santiago, y el sitio de construcción en Chile, facilitando la transición de nuestros empleados al teletrabajo desde casa. Con el tiempo, tanto nosotros como nuestros proveedores, pudimos retomar el trabajo presencial en nuestros laboratorios de manera segura y, antes de finalizar el año, la construcción se pudo reanudar en Las Campanas. Si bien nuestro cronograma se ha visto afectado, hemos seguido logrando excelentes avances.

GMTO Corporation se subadjudicó una subvención de la National Science Foundation (NSF) de los Estados Unidos por una propuesta presentada en 2019 para probar tecnologías pioneras de óptica activa y adaptativa para el Telescopio Magallanes Gigante. Este fondo permitirá contar con dos bases de pruebas de la fase óptica, una base de pruebas del sistema de control del espejo primario en tamaño real, así como la fabricación y prueba de elementos claves del primer espejo secundario adaptativo fuera del eje. Este año también presentamos una propuesta adicional a la NSF para preparar a la Corporación GMTO para cumplir con los requerimientos de la NSF, con miras a una posible participación del gobierno de los Estados Unidos en el Telescopio Magallanes Gigante.

La producción de espejos en el Laboratorio Richard F. Caris de la Universidad de Arizona continúa a buen ritmo. El pulido de la superficie frontal del segmento #3 ha logrado una precisión de 200 nanómetros y está a menos de un año de su finalización. Se completó el pulido de la superficie trasera del segmento #5 y los preparativos para fundir espejo #6 a comienzos del próximo año, están muy avanzados. Nuestro contratista de estructuras de telescopios está próximo a la revisión preliminar del diseño, en tanto que otros subsistemas del telescopio se encuentran en etapas preliminares o finales de diseño.

Esperamos el 2021 con determinación y optimismo para seguir avanzando en el diseño y la construcción del Telescopio Magallanes Gigante.

– Dr. Miguel Roth, Vicepresidente de GMTO y Representante Legal en Chile

Volver al inicio

Novedades sobre el sitio de construcción

Un trabajador de la construcción del Telescopio Magallanes Gigante con su equipo de seguridad y su máscara, frente al Observatorio Las Campanas en el desierto de Atacama, Chile.

A mediados de marzo, la mayoría de nuestro equipo dejó el sitio de construcción del GMT en el Observatorio Las Campanas en Chile, como medida de seguridad frente a la pandemia de COVID-19. Un equipo reducido permaneció en el sitio para realizar el mantenimiento esencial y salvaguardar nuestra infraestructura.

A fines de octubre, hubo un terremoto de magnitud 5,8 con epicentro cercano nuestro sitio, a unos 20 km al oeste y 60 km de profundidad. Inmediatamente realizamos una inspección detallada de nuestra infraestructura, caminos y equipos, de acuerdo con nuestros protocolos de seguridad. También hicimos mediciones en la cumbre para verificar si se habían producido desplazamientos del terreno. Afortunadamente, no hubo hallazgos ni ningún tipo de daños que reportar.

Después de una ausencia de 33 semanas, un contingente reducido recibe capacitación de seguridad contra el coronavirus antes de regresar al sitio de construcción. Siguiendo las regulaciones locales, los trabajadores se sientan a más de 1,5 metros de distancia entre sí en los asientos designados.

A comienzos de noviembre, después de cientos de horas de planificación y preparación para un retorno seguro al trabajo en el sitio del telescopio, nuestro equipo regresó con la misión de terminar el proyecto de infraestructura para la distribución de agua y servicios básicos. A la llegada del equipo al sitio, se realizaron sesiones informativas sobre las nuevas medidas de prevención ante el COVID-19, tanto en las operaciones en el sitio como los protocolos aplicados en la residencia. Durante nuestra primera semana de regreso, 45 personas estuvieron en el sitio, incluidos empleados de GMTO, contratistas y personal de servicios generales. La ocupación del sitio no superó el 20% de su capacidad.

Nuestro comedor fue reorganizado para permitir la trazabilidad de los contactos. Hemos reducido la capacidad máxima de 150 comensales a 40, utilizando mesas de 6 personas con un máximo de 2. Las comidas se realizan en turnos, con intervalos de 15 minutos de sanitización entre un turno y otro, además de la instalación de paneles divisorios en cada mesa. El alojamiento en las habitaciones ha pasado de uso compartido a uso individual y nuestras zonas de recreación (gimnasio, mesa de billar, TV) permanecen cerradas. Implementamos barreras de seguridad en las áreas del sitio donde ha sido necesario para garantizar la seguridad de los trabajos de construcción. Además, para permitir la trazabilidad de los contactos, el equipo se ha organizado en células de trabajo: grupos que trabajan juntos, comparten transporte y comparten turnos de comidas.

– Francisco Figueroa, Gerente de Construcción en el Sitio (Chile)

Volver al inicio

Subvención de la NSF acelera el desarrollo del telescopio

En septiembre, el Telescopio Magallanes Gigante se subadjudicó una subvención de la National Science Foundation (NSF) de los Estados Unidos por 17,5 millones de dólares, para acelerar la creación de prototipos y las pruebas de algunas de las tecnologías ópticas e infrarrojas más potentes jamás diseñadas. La subvención refuerza tres avances cruciales y elimina los riesgos:

  1. La construcción de dos bases de prueba para la alineación y puesta en fase, permitirá a los ingenieros demostrar, en un entorno controlado de laboratorio, que sus diseños centrales funcionarán para alinear y sincronizar los siete segmentos de espejo del telescopio, con la precisión requerida para lograr imágenes de difracción limitada con la primera luz en 2029.
  2. Un prototipo a gran escala del sistema de control y soporte del espejo primario que realiza el control óptico activo.
  3. La construcción parcial y prueba de un espejo secundario adaptable (ASM, por su sigla en inglés) de última generación, que se utiliza para realizar poner en fase el espejo primario y corregir la distorsión atmosférica.

“Nuestros siete espejos secundarios adaptativos llevan esta tecnología [óptica adaptativa] a un nivel superior”, dijo el Dr. James Fanson, Gerente de Proyecto del Telescopio Magallanes Gigante. “Nadie ha intentado utilizar siete ASM hasta ahora. Probablemente ésta sea la tecnología más avanzada que tenemos en el Telescopio Magallanes Gigante y su éxito es una prioridad absoluta. Necesitamos probar y validar su desempeño al principio del proyecto”.

Las bases de pruebas se desarrollarán en el Centro de Óptica Adaptativa Astronómica (CAAO) de la Universidad de Arizona y en el Smithsonian Astrophysical Observatory (SAO), mientras que las pruebas de los actuadores y la integración del soporte del espejo primario se desarrollarán en la Universidad de Texas A&M. Los espejos secundarios adaptativos se desarrollan por un contrato con AdOptica.

Esta subvención de la NSF posiciona al Telescopio Magallanes Gigante como uno de los primeros en la nueva generación de telescopios extremadamente grandes, lo que tendrán alrededor de tres veces el tamaño de cualquier telescopio óptico terrestre construido hasta la fecha y serán capaces de lograr una resolución diez veces mejor que la del Telescopio Espacial Hubble.

Ver noticia completa en inglés

Volver al inicio

¿Sabías que…?

El Telescopio Magallanes Gigante es miembro del Programa del Telescopio Extremadamente Grande de los Estados Unidos (US-ELTP), una iniciativa conjunta con el Telescopio de Treinta Metros (TMT) y el Laboratorio Nacional de Investigación en Astronomía Óptica-Infrarroja (NOIRLab) de la NSF, para proporcionar acceso de primer nivel a la totalidad del cielo nocturno (hemisferios norte y sur). Una vez finalizados los telescopios, los científicos de los EE. UU. podrán aprovechar estos telescopios pioneros del programa para llevar a cabo una investigación transformadora que responda a algunas de las principales preguntas de la humanidad.

Ver más sobre el US-ELTP en inglés

Volver al inicio

Pionero sistema antisísmico


En noviembre, un panel independiente de expertos de renombre internacional otorgó las mejores calificaciones al innovador sistema de protección sísmica del Telescopio Magallanes Gigante, capaz de proteger la estructura que pesa más de 6 mil toneladas, de daños causados por grandes terremotos. El innovador sistema no tiene precedentes en el campo de la astronomía, tanto por su inédito tamaño, como por su alta complejidad, y allanará el camino para la próxima generación en diseño de observatorios.

El Telescopio Magallanes Gigante se está construyendo en el Observatorio Las Campanas, en el desierto de Atacama en Chile, una de las mejores ubicaciones del planeta para observar el universo. Pero si bien esta remota región cuenta con más de 300 noches despejadas cada año, también es una de las regiones con mayor actividad sísmica del mundo. Los grandes terremotos en Chile pueden durar más de tres minutos y a menudo exceden los siete puntos en la escala de Richter.

El sistema de protección sísmica, o sistema de aislamiento sísmico, está diseñado para permanecer inactivo durante pequeños temblores “molestos”, comunes en el Observatorio Las Campanas. El sistema solo se activará durante terremotos de gran magnitud que superen los 5 puntos en la escala de Richter.
El sistema de aislamiento sísmico está ubicado debajo del pilar del telescopio y consta de dos líneas de defensa para la protección sísmica:

  1. Soportes de péndulo de fricción (SFP), que aíslan el telescopio de los movimientos laterales del suelo durante un terremoto.
  2. Sistema de recentrado del pilar, que puede devolver el telescopio y el pilar a la posición operativa normal después de un terremoto.

Al igual que los dispositivos sísmicos utilizados en puentes y otras estructuras grandes, los soportes SFP permiten que el pilar se mueva lateralmente con respecto a los cimientos, disipando energía y manteniendo el telescopio seguro. La matriz circular de 24 soportes tiene un rango de movimiento y un radio de curvatura de +/- 700 mm, lo que proporciona un período de movimiento lateral de cuatro segundos.
“La capacidad del pilar de moverse con respecto a los cimientos crea la necesidad asociada de llevar el telescopio a la posición ‘inicial’ después de un gran terremoto”, dijo el Dr. Bruce Bigelow Gerente del Sitio, Cúpula e Infraestructura del Telescopio Magallanes Gigante.
El sistema de monitoreo y recentrado del pilar (PRMS) utiliza un poderoso sistema hidráulico capaz de mover más de 6.200 toneladas métricas de telescopio y pilar (aproximadamente la mitad del peso del Puente de Brooklyn), para devolver el pilar a unos pocos milímetros de su posición operativa después de una gran terremoto.

Ver noticia completa en inglés

Volver al inicio

Prototipos de los Espejos Secundarios Adaptativos

Integración de la placa fría y el cuerpo de referencia (izquierda) y la base P72 aluminizada con los 72 imanes adheridos a su superficie posterior (derecha). (right)

El inmenso tamaño de los espejos primarios del Telescopio Magallanes Gigante requiere un poderoso sistema de óptica adaptativa para corregir los efectos causados por la atmósfera. El uso de los espejos secundarios adaptativos (ASM) permite recolectar la luz entrante y darle una forma opuesta a la distorsión introducida por la atmósfera, dando como resultado una imagen nítida.
“La incorporación de la tecnología de óptica adaptativa al Telescopio Magallanes Gigante permitirá a los astrónomos obtener imágenes de objetos aún más distantes gracias su capacidad para reducir al mínimo la distorsión atmosférica”, comenta Glenn Brossus, Subgerente de Proyecto del Telescopio Magallanes Gigante.

Diagrama de un segmento de espejo secundario adaptativo de GMT que muestra componentes clave como la superficie frontal adaptativa, el cuerpo de referencia rígido, los actuadores electromagnéticos, la placa fría y el posicionador del segmento con 6 grados de libertad.

En el núcleo de cada ASM hay 675 actuadores que pueden deformar o “adaptar” a la forma deseada la superficie frontal del espejo de 1.05 m de diámetro y 2 mm de espesor. Los actuadores están fijados a un cuerpo de referencia rígido y usan fuerza electromagnética para empujar y tirar de los imanes que están adheridos a la parte posterior de la superficie frontal del espejo. Esta capacidad de cambio de forma permite que los espejos se ajusten continuamente durante una exposición. Para corregir el error de fase óptica, cada segmento de espejo secundario moverá solo 4 kg de vidrio en lugar de un espejo primario de 17 toneladas, lo que simplifica enormemente el control general de la imagen del Telescopio Magallanes Gigante.

El progreso en los ASM del Telescopio Magallanes Gigante continua con el desarrollo del prototipo a escala. Se han recibido, ensamblado y probado componentes prototipo para la superficie frontal de 0,35 m de diámetro y 72 actuadores. La superficie frontal del prototipo ha sido recubierta con aluminio y tiene 72 imanes adheridos a la superficie posterior. Con la placa fría y el cuerpo de referencia integrados, los ingenieros del proyecto están listos para la siguiente etapa: pruebas de comportamiento óptico.

Más sobre Óptica Adaptativa en inglés

Volver al inicio

GMTO en SPIE 2020



Este año, la conferencia SPIE 2020: Telescopios e Instrumentos Astronómicos inauguró un foro virtual del 14 al 18 de diciembre. El Dr. James Fanson, Gerente de Proyecto del Telescopio Magallanes Gigante, dio una charla sobre el estado de avance del proyecto. Varios ingenieros del proyecto enviaron trabajos y realizaron presentaciones.

Más sobre las presentaciones y trabajos (en inglés)

Volver al inicio

Participa junto a GMTO en la AAS 2020

Participa junto al Telescopio Magallanes Gigante en la 237ª Reunión de la Sociedad Astronómica Americana (AAS), del 10 al 15 de enero de 2021. Asistiremos virtualmente en asociación con el Programa del Telescopios Extremadamente Grande de los Estados Unidos. ¡Busca el stand virtual del US-ELTP! El Dr. James Fanson, Gerente de Proyecto del Telescopio Magallanes Gigante también hablará durante una sesión especial sobre el US-ELTP, el 14 de enero de 2021.

Regístrate aquí

Volver al inicio

Categories: GMT News

2020 in Photos

Thu, 12/24/2020 - 04:23

Virtual snow falls on a rendering of the Giant Magellan Telescope. Set this holiday edition as your new desktop art. Download it here

2020 in photos

2020 was a year of progress and challenge for the Giant Magellan Telescope. Here is our 2020 story told in photos. Click the image to see the caption.

For the latest progress on the Giant Magellan Telescope, take a look at our 2020 in review newsletter.

Categories: GMT News

December 2020

Tue, 12/22/2020 - 11:43

Use the quicklinks below to navigate to the topics that interest you:

2020 in Review

2020 was a year of progress and challenge for the Giant Magellan Telescope.

We began the year as part of the US Extremely Large Telescope Program briefing to the American Astronomical Society. This program seeks to provide broad US community access to the Giant Magellan Telescope through the involvement of the US government. The scientific community response was quite positive.

This was followed by a briefing to the US Decadal Survey Panel on Optical and Infrared Observations from the Ground. The Decadal Survey will establish the scientific priorities for the US government over the next ten years. Our briefing was well received by the Panel, and the event was reported by the New York Times.

Then came the coronavirus pandemic, which upended our lives and forced us into a very different mode of work. The GMTO Corporation responded swiftly to close our office in Pasadena and the construction site in Chile and transition our employees to teleworking from home. Over time our suppliers and we were able to continue necessary work in laboratories safely, and by the end of the year, construction had resumed at Las Campanas. While our schedule has been impacted somewhat, excellent progress continues to be made.

The GMTO Corporation was a subawardee of a National Science Foundation (NSF) grant from a proposal we submitted in 2019 for work including adaptive and active optics technologies needed by the Giant Magellan Telescope. This will produce two optical phasing testbeds, a full-scale primary mirror control system testbed, and fabrication and testing of key elements of the first off-axis adaptive secondary mirror. We submitted an additional proposal to the NSF this year to prepare the GMTO Corporation for further interaction with the NSF aimed at possible US government involvement in the Giant Magellan Telescope.

Mirror production at the Richard F. Caris Laboratory at the University of Arizona continues apace. Segment #3 front surface polishing has achieved 200 nanometer accuracy and is less than one year from completion. Segment #5 rear-surface processing was completed, and preparations are well advanced to cast Segment #6 early next year. Our telescope structure contractor is approaching preliminary design review, and other telescope subsystems are in preliminary or final design stages.

We look forward to 2021 with determination and optimism for continued progress with the design and construction of Giant Magellan Telescope.

– Dr. James Fanson, Project Manager

Back to Top

Updates From the Construction Site

Giant Magellan Telescope construction worker wears safety gear and mask backdropped by Las Campanas Observatory in the Atacama Desert of Chile.

In mid-March, the majority of our team vacated the telescope site at Las Campanas Observatory in Chile as a safety precaution amidst the COVID-19 pandemic. A skeleton crew remained at the site to perform essential maintenance and safeguard our infrastructure.

In late October, there was a magnitude 5.8 earthquake with the epicenter not far from our site, about 20 km to the west and 60 km deep. Afterward, we conducted a detailed inspection of our infrastructure, roads, and equipment, in accordance with our safety protocols. We also took measurements at the summit to verify whether soil settlement occurred. Fortunately, there were no findings of any kind and no damages to report.

After a 33-week absence, a reduced workforce at the construction site receive coronavirus safety training before returning to work. Following local regulations, workers sit 6+ feet apart from one another in designated seating.

In early November, after hundreds of hours of dedicated planning and preparation for a safe return to work at the telescope site, our team remobilized with the intent to finish the Water and Utility Infrastructure distribution package. When the team arrived at the site, we conducted briefings on the new COVID-19 preventions in place, including facilities operations and residence protocols. During our first week back, 45 people were on site including GMTO Corporation employees, contractors, and general services personnel. Site occupancy is at roughly 20% capacity.

Our dining facilities have been reorganized to allow for contact traceability. We’ve downsized the maximum capacity of 150 diners to 40 diners, and of tables of 6 to tables of 2. Mealtimes now occur in shifts with 15-minute sanitation sweeps between shifts, and we’ve installed shielded dividers at each table setting. Room accommodations have transitioned from shared to individual use and our recreation facilities (gym, pool table, TV) remain closed. We’ve implemented safety barriers in the necessary areas at the site to conduct construction work. Additionally, to allow for contact traceability, the team has been organized into work cells – groups that work together, share transportation, and share meals shifts.

– Francisco Figueroa, Site Construction Manager (Chile)

Back to Top

NSF Grant Accelerates Telescope Development

In September, the Giant Magellan Telescope received a $17.5 million National Science Foundation (NSF) to accelerate the prototyping and testing of some of the most powerful optical and infrared technologies ever engineered. The grant supports three crucial advancements and retires risk:

  1. The build of two phasing testbeds will allow engineers to demonstrate, in a controlled laboratory setting, that its core designs will work to align and phase the telescope’s seven mirror segments with the required precision to achieve diffraction-limited imaging at first light in 2029
  2. A full-scale prototype of the primary mirror support and control system that delivers active optical control
  3. The partial build and testing of a next-generation Adaptive Secondary Mirror (ASM), which is used to perform the primary mirror phasing and atmospheric distortion correction.

“Our seven Adaptive Secondary Mirrors take [adaptive optics] technology to the next level,” said Dr. James Fanson, Project Manager of the Giant Magellan Telescope. “No one has attempted to use seven ASMs before the Giant Magellan Telescope. They are probably the most advanced tech we have on the telescope, and their success is a top priority. We need to test and validate their performance early on in the project.”

The testbeds will be developed at the University of Arizona Center for Astronomical Adaptive Optics (CAAO) and the Smithsonian Astrophysical Observatory (SAO), while actuator testing and integration of the primary mirror support will be developed at Texas A&M University. The Adaptive Secondary Mirrors are developed in contract with AdOptica.

This NSF grant positions the Giant Magellan Telescope to be one of the first in a new generation of large telescopes, approximately three times the size of any ground-based optical telescope built to date and capable of achieving ten times better resolution than the Hubble Space Telescope.

Read the Press Release

Back to Top

Did You Know?

The Giant Magellan Telescope is a member of the US Extremely Large Telescope Program (US-ELTP), a joint initiative with the Thirty Meter Telescope (TMT) and the NSF’s National Optical-Infrared Astronomy Research Laboratory (NOIRLab) to provide superior full-sky observing access (both Northern and Southern hemispheres). Upon completion of each telescope, scientists in the US will be able to take advantage of the program’s two pioneering telescopes to carry out transformational research that answers some of humanity’s most pressing questions.

Read About the US-ELTP

Back to Top

Protection From
Extreme Earthquakes

In November, an independent review panel of internationally renowned experts gave top marks to the Giant Magellan Telescope’s innovative seismic protection system capable of protecting the 13.6-million-pound telescope structure from extreme earthquake damage. The innovative system is unprecedented in the world of telescopes in terms of size and complexity and will pave the way for the next generation in observatory design.

The Giant Magellan Telescope is being constructed at Las Campanas Observatory in Chile’s Atacama Desert, one of the best locations on Earth to view the universe. But while this remote region boasts more than 300 clear nights of the galactic center per year, it is also one of the world’s most seismically active regions. Large earthquakes in Chile can last for more than three minutes and often exceed seven on the surface-wave magnitude scale (Ms).

The seismic protection system — or seismic isolation system — is designed to remain inactive during small “nuisance” earthquakes common at Las Campanas Observatory. The system will only engage during extreme earthquakes that exceed a magnitude of approximately 5 Ms.

The seismic isolation system is located under the pier of the telescope and consists of two lines of defense for seismic protection:

  1. Single friction pendulum (SFP) bearings, which isolate the telescope from lateral ground motions during an earthquake
  2. Pier recentering system, which can return the telescope and pier to the normal operational position following an earthquake.

Similar to the seismic devices used in bridges and other large structures, the SFP bearings allow the pier to move laterally with respect to the foundations, dissipating energy and keeping the telescope safe. The circular array of 24 bearings have +/- 700mm of motion range and a radius of curvature, which provides a four-second period of lateral motion.

“The ability of the pier to move with respect to the foundations creates an associated need to bring the telescope back to ‘home’ position after a big earthquake,” said Dr. Bruce Bigelow, Site, Enclosure, and Facilities Manager of the Giant Magellan Telescope.

The pier recentering and monitoring system (PRMS) uses a powerful hydraulic system capable of moving over 6,200 metric tons of telescope and pier (roughly half the weight of the Brooklyn Bridge), to return the pier within a few millimeters of its operational position following a major earthquake.

Read the Press Release

Back to Top

Prototyping the Secondary Mirrors

Cold-Plate and Reference Body integration (left) and coated P72 shell showing the 72 magnets bonded to its back surface (right)

The immense size of the Giant Magellan Telescope’s primary mirrors requires a powerful adaptive optics system to correct the blurring effects of the atmosphere. The use of the adaptive secondary mirrors (ASMs) allows us to collect incoming light and shape it with an error opposite to the measured atmospheric distortion, resulting in a blur-free image.

“The application of adaptive optics technology to Giant Magellan Telescope will provide future astronomers the ability to image even more distant objects due to the minimized atmospheric distortion effect,” shares Glenn Brossus, Assistant Project Manager for the Giant Magellan Telescope.

Exploded view of a GMT adaptive secondary mirror segment showing the key components which include the adaptive face sheet, rigid reference body, electromagnetic actuators, cold plate, and the 6- degrees of freedom segment positioner.

At the heart of each ASM are 675 actuators that can deform or “adapt” the 1.05m diameter, 2mm thick mirror face sheet to the desired shape. The actuators are fixed to a rigid reference body and use electromagnetic force to push and pull on the rare earth magnets that are bonded onto the back of the mirror face sheet. This shape-changing ability allows the mirrors to be continuously adjusted during an exposure. To correct the optical phase error, each secondary mirror segment will move just 4kg of glass rather than a 17-metric ton primary mirror, greatly simplifying overall image control of the Giant Magellan Telescope.

Progress continues on the Giant Magellan Telescope ASMs with the development of the subscale prototype. Prototype components for the 72 actuator 0.35m diameter face sheet have been received, assembled, and tested. The prototype face sheet has been coated with aluminum and has 72 magnets bonded to the back surface. With the cold plate and reference body integrated, project engineers are ready for the next stage: optical performance testing.

Learn About Adaptive Optics

Back to Top

Event Recap: SPIE 2020



This year, SPIE 2020: Astronomical Telescopes and Instrumentation kicked off a virtual forum on December 14–18. Dr. James Fanson, Project Manager of the Giant Magellan Telescope, gave an invited talk on the project’s latest status. Additionally, many of the telescope’s project engineers submitted papers and presented.

View More Presentations & Papers

Back to Top

Join us at AAS 2020

Join the Giant Magellan Telescope at the 237th Meeting of the American Astronomical Society (AAS), January 10–15, 2021. We’ll be virtually attending in partnership with the US Extremely Large Telescope Program — look for the US-ELTP Virtual Exhibit Booth! Dr. James Fanson, Project Manager of the Giant Magellan Telescope will also be speaking during a special splinter session on the US-ELTP on January 14, 2021 from 4:10–5:40pm.

Register Today

Back to Top

2020 in the News

2020 was a big news year, here are a few of our top picks:

For news in Spanish and from Chile, please see the Spanish version of our Newsletter.

Back to Top

Job Opportunities

Back to Top

Questions and inquires on how to support the Giant Magellan Telescope, please email us at connect@gmto.org

Categories: GMT News

Giant Magellan Telescope earns top marks in earthquake safety, a first in observatory design

Thu, 12/17/2020 - 01:00

International review panel praises the Giant Magellan Telescope’s innovative seismic protection system capable of protecting the 13.6-million-pound telescope structure from earthquake damage in one of the world’s most seismically active regions.

PASADENA, CA — Engineers designing the Giant Magellan Telescope have solved an immense design challenge never attempted before: Protecting a 22-story rotating observatory and seven of the world’s largest monolithic mirrors from being damaged by earthquakes. The innovative seismic protection design earned top marks from an independent review panel of international experts in November, paving the way for the next generation in observatory design.

“The structures of the next generation of extremely large telescopes are so massive, their instruments so sensitive, and the seismic environments they are located in are so intense, that there’s really no way to avoid seismic protection. We need a seismic isolation system to keep the telescope operational,” said Dr. Bruce Bigelow, the Giant Magellan Telescope’s Site, Enclosure, and Facilities Manager.

The Giant Magellan Telescope is a new 30-meter class ground-based telescope being constructed at Las Campanas Observatory in Chile’s Atacama Desert, one of the best locations on Earth to view the universe. But while this remote region boasts more than 300 clear nights of the galactic center per year, it also is home to some of the biggest, the most frequent, and the most destructive Earthquakes ever recorded. Large earthquakes in Chile can last for more than three minutes and often exceed seven on the surface-wave magnitude scale (MS).

The Giant Magellan Telescope construction site at Las Campanas Observatory in Chile, February 2020. Image credit: Giant Magellan Telescope – GMTO Corporation

“Telescopes that have been built in seismically active regions were designed, due to their smaller scale, without explicit seismic mitigation,” said Dr. Dave Ashby, the Giant Magellan Telescope’s Project Engineer. “While most remain operational today, some have incurred costly earthquake damage. The new generation of extremely large telescopes will be built with sophisticated seismic mitigations, including seismic isolation, to balance construction and operational costs over the extended operational service lives of these large facilities.”

The seismic protection system — also known as a seismic isolation system — on the Giant Magellan Telescope is unprecedented in the world of telescopes, in terms of the size and complexity. Unlike hospitals or large bridges, the seismic isolation system needs to not only protect the structures from collapse, but also to prevent the structure and fragile optical components inside from requiring repair. Because the Giant Magellan Telescope’s seismic isolation system serves as the telescope foundation, it must be very reliable. By design, the probability of seismic isolation failure is less than 0.5 percent over the 50-year service life of the observatory. The system is designed to remain inactive during small “nuisance” earthquakes that are common at Las Campanas Observatory. The system will only engage during extreme earthquakes that will typically occur on a 1–2-year time scale.

The Giant Magellan Telescope’s seismic isolation system consists of two lines of defense that keep it safe and allow a return to operations within hours to weeks, depending on the magnitude of a seismic event.

  1. Seismic Isolation System: A circular array of 24 single friction pendulum isolators that support the telescope and its pier and protect the telescope’s optical components and instruments from active ground motion caused by a major earthquake.
  2. Pier Recentering System: A hydraulic system that can return the 13,602,600-pound telescope structure to its original resting and operational position following a major earthquake.

A circular array of 24 single friction pendulum isolators are located under the Giant Magellan Telescope’s pier that supports the telescope and protects optical components and instruments from active ground motion caused by major earthquakes. Image credit: Giant Magellan Telescope – GMTO Corporation

After a major earthquake, the friction pendulum isolators may not return the telescope exactly back to its normal operation position. “The isolation system will return the telescope to its ‘home’ position within a couple of inches, but that’s not good enough,” said Dr. Bigelow. “That’s where the hydraulics of the pier recentering system come in, which can move the 6,000 metric tons of telescope and pier and return the telescope to a fraction of an inch from where it was before the earthquake.”

Seismic pendulum bearing under full scale test on a 275-ton hydraulic mount with lateral hydraulic ram. Image credit: Giant Magellan Telescope – GMTO Corporation

To validate this revolutionary design, engineers at the Giant Magellan Telescope exposed the design to an independent review panel of internationally renowned experts in seismic isolation systems, very large hydraulic positioning systems, and the formulation and placement of high-strength concrete. Reviewers reported that the preliminary designs have successfully met the seismic protection requirements that, as Dr. Bigelow said, are “absolutely crucial to assuring that the telescope can do its job for 50 years.”

For more information about the Giant Magellan Telescope, visit gmto.org

###

Media Contact
Ryan Kallabis
Director of Communications
rkallabis@gmto.org
(626) 204-0554

Multimedia Resources
Multimedia from the release are available here until January 8, 2021.

Assets may not appear uncredited. Credit line must be given as follows: Giant Magellan Telescope – GMTO Corporation.

Categories: GMT News

Major NSF grant accelerates development for one of the world’s most powerful telescopes

Wed, 09/16/2020 - 18:45

The Giant Magellan Telescope fast-tracks development of revolutionary optical technologies necessary to transform humanity’s view and understanding of the universe at first light

PASADENA, CA — The GMTO Corporation has received a $17.5 million grant from the National Science Foundation (NSF) to accelerate the prototyping and testing of some of the most powerful optical and infrared technologies ever engineered. These crucial advancements for the Giant Magellan Telescope (GMT) at the Las Campanas Observatory in Chile will allow astronomers to see farther into space with more detail than any other optical telescope before. The NSF grant positions the GMT to be one of the first in a new generation of large telescopes, approximately three times the size of any ground-based optical telescope built to date.

The GMT and the Thirty Meter Telescope (TMT) are a part of the US Extremely Large Telescope Program (US-ELTP), a joint initiative with NSF’s NOIRLab to provide superior observing access to the entire sky as never before. Upon completion of each telescope, US scientists and international partners will be able to take advantage of the program’s two pioneering telescopes to carry out transformational research that answers some of humanity’s most pressing questions, such as are we alone in the universe and where did we come from.

“We are honored to receive our first NSF grant,” said Dr. Robert Shelton, President of the GMTO Corporation. “It is a giant step toward realizing the GMT’s scientific goals and the profound impact the GMT will have on the future of human knowledge.”

https://www.gmto.org/wp-content/uploads/NSF20Award20Announcement-5.mp4

 

One of the great challenges of engineering revolutionary technologies is constructing them to operate at optimal performance. The Giant Magellan Telescope is designed to have a resolving power ten times greater than the Hubble Space Telescope — one of the most productive scientific achievements in the history of astronomy. This advancement in image quality is a prerequisite for the GMT to fully realize its scientific potential and expand our knowledge of the universe.

“Image quality on any telescope starts with the primary mirror,” said Dr. James Fanson, Project Manager of the GMTO Corporation. “The Giant Magellan Telescope’s primary mirror comprises seven 8.4m mirror segments. To achieve diffraction-limited imaging, we have to be able to phase these primary mirror segments so that they behave as a monolithic mirror. Once phased, we must then correct for Earth’s turbulent atmospheric distortion.”

This image quality comparison is of a small patch of sky as observed from the ground through the atmosphere with the naked eye (left), as the Hubble Space Telescope would observe it (center), and a simulation of the Giant Magellan Telescope using adaptive optics to achieve diffraction limited seeing from the ground (right). When online, the GMT will achieve ten times better resolution than the Hubble Space Telescope. Image credit: Giant Magellan Telescope – GMTO Corporation

Phasing involves precisely aligning a telescope’s segmented mirrors and other optical components so that they work in unison to produce crisp images of deep space. Achieving this with seven of the world’s largest mirrors ever built is no easy task. The immense size of the GMT’s primary mirror requires a powerful adaptive optics system to correct for the blurring effects of the Earth’s atmospheric turbulence at kilohertz speeds. In other words, astronomers need to take the subtle “twinkle” out of the stars in order to capture high-resolution data from celestial objects thousands of light-years from our planet.

The NSF grant enables the GMT to build two phasing testbeds that will allow engineers to demonstrate, in a controlled laboratory setting, that its core designs will work to align and phase the telescope’s seven mirror segments with the required precision to achieve diffraction-limited imaging at first light in 2029. This includes a full-scale prototype of the primary mirror support and control system that delivers active optical control. The testbeds will be developed at the University of Arizona Center for Astronomical Adaptive Optics (CAAO) and the Smithsonian Astrophysical Observatory (SAO), while actuator testing and integration of the primary mirror support will be developed at Texas A&M University.

A gray steel structure that simulates one of the massive 16.5 ton Giant Magellan Telescope primary mirror segments is installed onto a test cell. The GMT test cell and mirror simulator will be used to test the support structure and actuators that hold the massive telescope in place, including the software that controls the precise movements of the mirrors. Image Credit: Steve West, Richard F. Caris Mirror Lab at the University of Arizona

The NSF grant also enables the partial build and testing of a next-generation Adaptive Secondary Mirror (ASM), which is used to perform the primary mirror phasing and atmospheric distortion correction. This work will be developed in contract with AdOptica.

“Our seven Adaptive Secondary Mirrors take this technology to the next step,” said Dr. Fanson. “No one has attempted to use seven ASMs before the Giant Magellan Telescope. They are probably the most advanced tech we have on the telescope, and their success is a top priority. We need to test and validate their performance early on in the project.”

Exploded view of a Giant Magellan Telescope’s adaptive secondary mirror segment showing the key components which include the adaptive face sheet, rigid reference body, electromagnetic actuators, cold plate, and the 6- degrees-of-freedom segment positioner. Image credit: Giant Magellan Telescope – GMTO Corporation

Astronomers will use the GMT’s high-fidelity adaptive mirrors and other revolutionary adaptive optics technologies to detect faint biosignatures from distant exoplanets — one of the GMT’s primary scientific goals.

This work is part of a larger $23 million joint-award to the Association of Universities for Research in Astronomy (AURA) and the GMTO Corporation over the next three years. The GMT project is the work of a distinguished international consortium of leading universities and science institutions.

 

Media Contact
Ryan Kallabis
Director of Communications
rkallabis@gmto.org
(626) 204-0554

Multimedia Resources
Additional images from the release are available here until September 23, 2020.

Assets may not appear uncredited. Credit line must be given as follows: Giant Magellan Telescope – GMTO Corporation.

 

Categories: GMT News

In Memoriam – João E. Steiner

Sat, 09/12/2020 - 06:53

The team at GMTO Corporation is celebrating the life of astronomer João Evangelista Steiner, who died unexpectedly on September 10, 2020. As a professor at the Institute of Astronomy, Geophysics, and Atmospheric Sciences of the University of São Paulo, Dr. Steiner made remarkable contributions to the Brazilian and international astronomical communities.

GMTO President, Robert Shelton, first met Dr. Steiner at the dedication of the SOAR telescope, many years ago. In addition to his contributions scientifically, Shelton was impressed from this first meeting with his kindness toward others. He was an extraordinary individual.

Dr. Steiner joined the GMT project representing the São Paulo Research Foundation (FAPESP) in 2015. Upon joining, he said that “the GMT project will help ensure that Brazilian astronomers remain at the forefront of research for decades to come.”

His leadership, advocacy, and friendship at GMTO will be greatly missed.

Categories: GMT News

A Significant Milestone

Wed, 08/19/2020 - 02:09

 

A significant milestone for GMTO’s primary mirror controls team recently took place at the Richard F. Caris Mirror Lab at the University of Arizona – the bringing together of the mirror simulator, the prototype mirror cell, and the test cell. Read more about the simulator, how it came together, and the planned tests here.

Categories: GMT News

Carnegie Virtual Conversation with Rebecca Bernstein

Mon, 08/17/2020 - 07:30
The Pursuit of Light: Building the GMT

GMTO Chief Scientist Rebecca Bernstein gave a 20-minute presentation touching on the history of astronomy and highlighting the capabilities and progress of the GMT.

–Visit Carnegie’s site to view the presentation.

Categories: GMT News

Declaración conjunta sobre la presentación de las propuestas de “Planificación y diseño de un programa de telescopios extremadamente grandes de EE.UU.” a la Fundación Nacional de Ciencias 

Wed, 08/12/2020 - 08:49

A fines de mayo de 2020, los socios del Programa de Telescopios Extremadamente Grandes de EE. UU. (US-ELTP) presentaron conjuntamente tres propuestas de Planificación y Diseño a la Fundación Nacional de Ciencias de Estados Unidos (NSF). Los socios de US-ELTP incluyen a: NOIRLab de NSF, administrado por la Asociación de Universidades para la Investigación en Astronomía, Inc. (AURA), la Corporación Telescopio Magallanes Gigante (GMTO) y el Observatorio Internacional del Telescopio de Treinta Metros (TIO).

La recomendación del Estudio Decenal de Astronomía y Astrofísica de las Academias Nacionales (Astro2020), que se espera para la primera mitad de 2021, y la preparación del Telescopio Magallanes Gigante y el Telescopio de Treinta Metros para iniciar al proceso de revisión de las grandes instalaciones de NSF, son pasos importantes que están por venir. No obstante, los socios ven la presentación de estas propuestas como un hito importante en la evaluación de todos los aspectos del programa.

El concepto subyacente de US-ELTP presentado a NSF como parte de esta propuesta sigue siendo coherente con la visión que los socios presentaron en el Panel de Observaciones Ópticas e Infrarrojas Terrestres de las Academias Nacionales Astro2020 en febrero de 2020. El plan para el US-ELTP sigue siendo ser un sistema complementario de telescopios extremadamente grandes en ambos hemisferios que proporcionarían a la comunidad científica de EE.UU. acceso al 100% del cielo nocturno para realizar la próxima generación de descubrimientos sobre nuestro universo. Chile es el sitio propuesto para el Telescopio Magallanes Gigante en el sur, y para el norte, Maunakea, Hawai’i, EE. UU., es el sitio principal propuesto para el Telescopio de Treinta Metros, siendo el sitio de La Palma, en Islas Canarias, España, la opción alternativa.

For this statement in English, please click here.

Para leer esta declaración en inglés, por favor ingrese aquí.

Categories: GMT News

Joint Statement from the US ELT Program

Wed, 08/12/2020 - 08:48
Joint Statement regarding the submission of the “Planning and Design for a US Extremely Large Telescope Program” proposals to the National Science Foundation

At the end of May 2020, the partners of the US Extremely Large Telescope Program (US-ELTP) jointly submitted three Planning and Design proposals to the National Science Foundation (NSF).  The US-ELTP partners include: NSF’s NOIRLab, managed by the Association of Universities for Research in Astronomy, Inc. (AURA), the Giant Magellan Telescope Corporation (GMTO), and the Thirty Meter Telescope International Observatory (TIO).

The recommendation of the National Academies’ Decadal Survey of Astronomy and Astrophysics (Astro2020), which is currently expected in the first half of 2021, and the readiness of the Giant Magellan Telescope and the Thirty Meter Telescope to enter NSF’s major facilities review process would be important next steps.   Nonetheless, the partners view the submission of these proposals as an important milestone in the evaluation of all aspects of the program.

The underlying US-ELTP concept presented to NSF as part of this proposal remains consistent with the vision the partners presented to the National Academies’ Astro2020’s Panel on Optical and Infrared Observations from the Ground in February 2020.   The plan for the US-ELTP continues to be a two-hemisphere system of complementary ELT-class telescopes that would provide the US science community with access to 100% of the night sky to make the next generation of discoveries about our Universe.  Chile is the proposed site for the Giant Magellan Telescope in the south, and for the north, Maunakea, Hawai’i, USA is the proposed primary site for the Thirty Meter Telescope, with La Palma, Canary Islands, Spain as the back-up site.

For this statement in Spanish, please click here.

Para leer esta declaración en español, por favor ingrese aquí.

The U.S. Extremely Large Telescope Program (US-ELTP)

NSF’s National Optical-Infrared Astronomy Research Laboratory (NOIRLab) managed by the Association of Universities for Research in Astronomy, Inc. (AURA)

Giant Magellan Telescope; GMTO Corporation (GMTO)

Thirty Meter Telescope International Observatory (TIO)

Media Contacts

AURA: Shari Lifson, slifson@aura-astronomy.org, (202) 769-5232

GMTO: Dr. Cindy Hunt, cindy.hunt@gmto.org, (626) 204-0510

TIO: Dr. Gordon Squires, media@tmt.org, (808) 284-9922

Categories: GMT News

July 2020

Thu, 07/02/2020 - 00:48
Contents Welcome

Dear Friends,

During these uncertain times of COVID-19, GMTO closed our offices in Pasadena and Santiago in mid-March, but that action has not slowed our work. Our team continues to make progress while working from home via videoconferences. At the telescope site, we completed an important upgrade to the water facilities, then shut down all activities, keeping a skeleton crew for security, safety, and maintenance. In the US, like many businesses we are rolling out our protocols for reopening the offices. At GMTO, we are also stressing flexibility for our employees to continue to make progress in building the telescope.  

This newsletter covers a wide range of exciting activities from the first half of this year. Work on the mirror simulator, fabricated at CAID Industries and installed on the test cell at the Richard F. Caris Mirror Lab, has been moving forward with our partners. Early this year, GMTO welcomed our newest member of the Board of Directors, Dr. Sung Hyun Park of Korea who is Professor Emeritus in the Department of Statistics at Seoul National University. At the beginning of the year, GMTO attended the 235th American Astronomical Society meeting in Hawaii, and we also presented to the Astro2020 Panel on Optical and Infrared Observatories from the Ground in Washington, DC. I am excited to share these updates and more with you.  

Dr. Robert Shelton – President, GMTO

Back to Top

Mirror Simulator Installed

A significant milestone for GMTO’s primary mirror controls team recently took place at the Richard F. Caris Mirror Lab at the University of Arizona – the bringing together of the mirror simulator, the prototype mirror cell, and the test cell. The mirror simulator is currently resting on top of the static supports attaching it to the test cell top plate. For this procedure, the mirror simulator was gently lowered into the prototype mirror cell until the static supports flex imperceptibly and are fully supporting the simulator representing a crucial dress rehearsal for the process of integrating a glass mirror. 

The mirror simulator is a round piece of steel, weighing approximately 14,000kg – somewhat lighter than a glass GMT mirror. The underneath of the simulator looks like a bed of nails – it has a vast array of “interface features” that attach to the mechanisms that support and control the mirrors – the single and triple actuators, the hardpoints, and the static supports. The simulator’s purpose is not to mimic a primary mirror exactly, but to validate the mirror support system, both in hardware and software.

Mirror simulator move from CAID Industries in Tucson to the Richard F. Caris Mirror Lab at the University of Arizona, February 2020. Image credit: Zaven Kechichian.

The prototype mirror cell weldment (the steel part of the mirror cell) measures 8.6 m long, 10 m wide by 1.8 m tall, and weighs about 22,700 kg. Its role is to hold all the different support mechanisms that the mirror requires to keep its shape. The weldment was designed by engineers at GMTO and was manufactured at CAID Industries in Arizona. The weldment plus support system comprises the Mirror Cell. 

The support system for each off-axis mirror consists of 170 pneumatic actuators and 326 static supports and a few less for the center segment. The actuators are designed to lift and shape the mirrors, and their most important component is a “load cell” which measures how much force the actuator is applying to the mirror – too little and the mirror won’t move, too much and excess stress could be placed on the mirror. To make sure the load cells are making accurate measurements, they need to be calibrated, which GMTO’s software team has been working on. The team has created an Actuator Calibration Stand (ACS) that can calibrate a single actuator in less than an hour. A second ACS that can mimic the sideways force on actuators when the telescope is tilted has also been developed. These ACS’s will be delivered to the Mirror Lab. 

The mechanical parts of the actuators are being assembled at Texas A&M University and are being delivered to the Mirror Lab, where the electronics are being integrated. The actuators are then calibrated by the ACS. Even with one calibration taking less than an hour, with 170 to do for each of the seven mirrors, this part of the process will take months!  

In parallel, the Software team has been working on the software control system for the actuators. This software needs to be able to send commands and read back the results to all 170 actuators of a mirror in 10 milliseconds. The software they are creating will be the “production” software used on the actual telescope. The team can achieve this because they can test it on a very close analog to the final system and thus save years of software simulations. 

At the Mirror Lab, GMTO and UA engineers spent time earlier this year installing static supports onto its top plate in preparation for receiving the mirror simulator. Static supports are designed to hold the mirror when it’s at rest and to catch it during an earthquake.  

Static supports prior to the simulator integration, June 2020. Image credit: Steven West/Richard F. Caris Mirror Lab at the University of Arizona

Closeup of the static supports, June 2020. Image credit: Steven West/Richard F. Caris Mirror Lab at the University of Arizona

The GMTO team and UA team have become highly integrated over the past few months as work on this project continues. By the time the testing of the control system with the simulator is complete, and the team is ready to integrate a real glass mirror, the project will have gained a great deal of knowledge about how we can phase and control the primary mirrors.  

Lowering the simulator onto the test cell, June 2020. Image credit: Steven West/Richard F. Caris Mirror Lab at the University of Arizona

Mirror simulator installed, June 2020. Image credit: Steven West/Richard F. Caris Mirror Lab at the University of Arizona

Back to Top

Welcome New Board Director

Dr. Syung Hyun Park

GMTO welcomes our newest member of the Board of Directors, Dr. Sung Hyun Park of Korea. Dr. Park is Professor Emeritus in the Department of Statistics at Seoul National University and the President of the Social Responsibility and Management Quality Institute. He is a member of the National Academy of Sciences, Republic of Korea, and he holds a certification as an Academician by the International Academy for Quality (IAQ). Dr. Park currently serves on the Korean Foundation for Quality Board of Directors.  

Dr. Park has had a distinguished career. Last year, he received the 2019 Albert Nelson Marquis Lifetime Achievement Award. He previously served as the President and Board member of the Korean Academy of Science and Technology, as well as the Dean of the College of Natural Sciences and the Office of Student Affairs at Seoul National University. He was the President of the Korean Society for Quality Management as well as the President of the Korean Statistical Society. He was the Director of the Directorate of Basic Research in Science and Engineering, National Research Foundation of Korea. Additionally, he was a member of the Presidential Advisory Council on Science and Technology for the Korean Government. He received the Order of Service Merit Red Stripes Medal as well as the Order of Science & Technology Merit Innovation Medal from the President of the Korean Government.  

When asked what sparked his interest in joining the GMTO Board of Directors, Dr. Park shared, “I am proud of the fact that the KASI (Korean Astronomy and Space Science Institute) is participating in the GMT Project. As a past president of the Korean Academy of Science and Technology, I would like to strongly support the GMT Project.”  

Dr. Park shared the scientific discoveries he’s most looking forward to with the GMT stating, “when the GMT is in operations in the future, I will be most excited to have some knowledge ‘toward understanding how planets formed and how human beings came to earth in the beginning’.” 

 To learn more about GMTO’s Board of Directors, please visit GMTO’s website

Back to Top

Unusual Winter Snowfall at the GMT Site

GMT Site, June 2020

GMT Summit Office, June 2020

The Giant Magellan Telescope is being constructed in one of the highest and driest regions on earth, Chile’s Atacama Desert. While the GMT will have spectacular conditions for more than 300 nights a year, the rare winter storm does happen like it did a few weeks ago. Las Campanas Peak (“Cerro Las Campanas”), where the GMT will be located, has an altitude of over 2,550 meters or approximately 8,500 feet. The combination of seeing, number of clear nights, altitude, weather, and vegetation make Las Campanas Peak an ideal location for the GMT.

Site construction is paused as a safety precaution during the COVID-19 pandemic, and we look forward to when our staff is able to safely return to work at the site. Amidst this pause, the GMT site welcomed the first day of winter with an unusual amount of snowfall for this generally dry and arid location.

Back to Top

Once in a Decade Presentation

Astro2020 Panel, February 2020. Image credit: James Fanson

In late February, several GMTO staff traveled to Washington, DC, for a meeting with the Astro2020 Panel on Optical and Infrared Observatories from the Ground. Every ten years, the astronomy community evaluates and prioritizes the cutting-edge science topics and the missions in space and on the ground to make recommendations to the US federal funding agencies. This decadal process is led by the National Academies of Science, Engineering, and Medicine. The process starts with a call for white papers from the community on scientific topics of the highest priority for the coming decade and the technical programs needed to support them (computing, space programs, ground-based programs) and the state of the profession overall. Individual panels evaluate the science and projects on the horizon for the coming decade, and the steering committee compiles and issues a final report, expected early 2021.

The US ELT Program was selected to present an overview of the scientific and technical case for the joint project at the National Academies’ Keck Center near the Penn Quarter of the city for an entire afternoon session. The team presented information about the GMT and the US ELT Program alongside representatives from NOIRLab and the Thirty Meter Telescope Project. The GMT and TMT Project Managers gave comprehensive updates while the GMTO Chief Scientist and TMT SAC Chair described the technical and scientific capabilities that the two-hemisphere program will enable. The NOIRLab presented on their work to provide both observing and data access to the US Community. The panel asked questions about instrumentation, funding strategies, operational models, as well as other topics.

The presentations to the Astro2020 panel were the culmination of months of intensive effort, as well as 18 months of targeted interaction with the community to develop program support. The GMTO team responded in writing to multiple Requests for Information from the panel prior to this meeting and answered detailed questions related to the science, technology, and programmatic issues surrounding the individual telescopes (GMT and TMT) and the entirety of the US ELT Program. It is a testament to the profile and importance of the US ELT Program that observers joined the presentations in person from the National Science Foundation, the Kavli Foundation, and the New York Times, and a broad audience connected online. 

Back to Top

US-ELT Program at the American Astronomical Society Meeting

At the beginning of the year, GMTO attended the 235th American Astronomical Society meeting in Honolulu, HI, as part of the US ELT Program, a partnership with NOIRLab and the Thirty Meter Telescope Project. The US ELT Program hosted a social open house, a scientific meeting, and a shared booth in the exhibit hall. 

The open house encouraged the community to ask questions of the US ELT Program leadership and find out more about the program. There were briefings on the technical and scientific synergies that will be achieved by the combined power of the GMT and TMT. Dr. Patrick McCarthy, Director of NOIRLab, Dr. Rebecca Bernstein, GMTO Chief Scientist, and Dr. Jessica Lu, faculty at the University of California, Berkeley, presented at this session.  

The scientific meeting started with project status updates from Dr. James Fanson, GMTO Project Manager, and Dr. Mike Bolte, TMT Board Member. Following this, members of the astronomical community gave brief scientific presentations. Dr. Nikole Lewis of Cornell University talked about extrasolar planetary systems, Dr. Jonelle Walsh of Texas A&M University discussed the dynamical searches for black holes with ELTs, and Dr. Francis-Yan Cyr-Racine of the University of New Mexico outlined the cosmological applications of gravitational lensing. 

The events were well attended by the community, and we enjoyed the great questions about the US ELT Program and the two telescopes. For more information about the US ELT Program, please visit the NOIRLab website.

235th AAS Meeting Exhibit Booth, January 2020

235th AAS Meeting Presentation, January 2020

235th AAS Meeting Exhibit Booth, January 2020

Back to Top

Categories: GMT News

SPIE: On Shaky Ground

Tue, 06/16/2020 - 05:40
A new generation of ‘extremely large’ telescopes is being built in earthquake-prone areas. How will engineers protect these massive machines?

“We believed we could resolve our seismic challenges without an extreme measure of seismic isolation,” said GMT project designer Dave Ashby. “It’s actually a pretty compact design. However, once we actually started to explore the risk exposure in a quantitative way, we rapidly came to the conclusion that that wasn’t practical.”

Read the full story at SPIE

Categories: GMT News

SPIE: Casting Giants

Sat, 06/13/2020 - 08:42
Spun-cast telescope mirrors continue to shape astronomy’s future

“The GMT will consist of six off-axis 8.4-meter mirrors that surround a central on-axis mirror to form a single optical surface 24.5 meters in diameter with a total collecting area of 368 square meters. In fact, the GMT mirrors will collect more light than any telescope ever built, with a resolving power 10 times greater than the Hubble Space Telescope.”

–Read the full story at SPIE

Categories: GMT News

Meet GMTO: Bob Turner

Wed, 05/20/2020 - 07:28

Bob Turner is GMTO’s Deputy Site Enclosure and Facilities Manager. He has a B.S. in Economics and has been with GMTO since 2016.

What sparked your interest in working with GMTO?

I was given the opportunity to work as a consultant for GMTO and one of the selling points was the wow factor attached to this project. I have been involved in major engineering projects throughout my career, but never a project that combines the scientific sophistication and engineering precision that this project requires. I get excited every day with the thought that I am contributing to the success of this project.

Describe what you saw when you looked through your first telescope.

I saw an opportunity to touch the moon. I grew up in the age of the Apollo space missions. As a child, watching man land on the moon for the first time, truly was other worldly. Through the telescope, the moon seemed so far away, yet so close.

Within your field, what area fascinates you most and why?

I still get excited watching projects get built. The physical construction of a project is the tangible evidence of hard work by great teams.

What has been your most surprising moment within your career?

When I was offered my first supervisory position at Boeing at the age of 28. I thought the Director I was talking to was joking, but he saw something in me that led him to take a chance.

What was your initial impression of GMTO and why did you get involved?

My first impression was that this is an incredible project with incredibly intelligent people. I knew I could contribute to GMT’s success with my organizational skills and common sense. It was exciting to imagine being a part of this project.

When I was considering joining GMTO as an employee, the Site, Enclosure and Facilities manager asked me, “where else can you work where the reason for the project is to bring more knowledge to mankind?” That’s a pretty great way to think about why we do what we do.

Share a non-science related talent/skill/interest/hobby that you have.

I like to garden. Springtime is great, the vegetables have all been planted and they are starting to sprout.

What advice would you give to young kids exploring STEM fields as careers?

Do what you love. Work for people and organizations that you respect.

Categories: GMT News

Hubble Space Telescope’s 30th Anniversary

Sat, 04/25/2020 - 09:03

In celebrating the Hubble Space Telescope’s 30th year in orbit, GMT Project Manager, Dr. James Fanson, and GMT Project Scientist, Dr. Rebecca Bernstein, share their thoughts on Hubble and its impact on astronomy.

How do Hubble images and discoveries help make astronomy accessible to the public?

The combined sensitivity and resolution of the Hubble Space Telescope made the Hubble Ultra Deep Field image the “deepest” image ever taken. It was possible to identify and see the structure of more distant galaxies than had ever been seen. This led to the realization that galaxies in fact formed much faster than we had previously thought, which led to a whole host of new questions about how dark matter (and dark energy) impacted the evolution of the universe and the structures in it. – Dr. Rebecca Bernstein

This view of nearly 10,000 galaxies is called the Hubble Ultra Deep Field. The image required 800 exposures taken over the course of 400 Hubble orbits around Earth. The total amount of exposure time was 11.3 days, taken between Sept. 24, 2003 and Jan. 16, 2004. Image Credit: NASA, ESA, S. Beckwith (STScI) and the HUDF Team

The Hubble Space Telescope revolutionized astronomy in the same way Galileo’s telescope did 400 years ago when first turned to the heavens. Hubble’s images reached the level of art, and its discoveries touched the imagination of ordinary people around the world. Hubble became the “people’s telescope” and it will always have a cherished place in our history and culture. – Dr. James Fanson

GMT Project Manager, Dr. James Fanson, reflected on his time working on the Wide Field And Planetary Camera 2 (WFPC2), designed and built at NASA’s Jet Propulsion Laboratory in Pasadena, California.

Dr. James Fanson holding a model of an active mirror assembly, three of which were installed in the WFPC2 to Aline corrective optics with Hubble. Image captured at the time of the Hubble repair. Image Credit: Jet Propulsion Laboratory

What engineering challenges did you face in working on the camera that saved Hubble? Were any insights learned valuable for GMT?

There were three main challenges we faced in fixing Hubble: 1) how do you determine the cause of the problem when Hubble is orbiting 300 miles above your head?; 2) how do you engineer a technical fix that will actually correct the problem and not make it worse?; and 3) how can you implement the fix in a new instrument and have it ready to launch in less than three years?

NASA/ESA Hubble Space Telescope in high orbit 600 kilometres above Earth. Image Credit: European Space Agency

To fix Hubble, we reached for new technology that had never before flown in space, and tossed out the rule book in order to have it ready to launch in time. One lesson from Hubble is that cross checks are crucial to detect and correct human error. At GMT, we use three independent methods to verify that our mirrors are polished to the correct shape. – Dr. James Fanson

Categories: GMT News

Meet GMTO: Bob Goodrich

Wed, 04/15/2020 - 02:18

Bob Goodrich is GMT’s Observatory Scientist. He has a Ph.D. in Astronomy and Astrophysics from the University of California, Santa Cruz. He’s been with GMTO since March 2015.

What sparked your interest in science?

I have always been fascinated by those greater things out in the Universe; planets, stars, galaxies… What discoveries can we make without being able to go out and touch the stars?

Describe what you saw when you looked through your first telescope.

I first looked at the Moon through a cheap, department-store 40 mm refractor that my siblings and I had bought with our allowances.

How old were you when you decided that you wanted to pursue a career in a STEM field?

I was interested in astronomy at a very early age. My mother has something I wrote when I was about 7 years old, where I said I want to become a doctor and have astronomy as a hobby. (At that age I didn’t realize that you could get a doctorate in astronomy!) My interest really piqued when my family moved to rural Australia, where they turned off the town’s streetlights at 11 p.m. to save electricity.

Both within your field and outside of it, who do you respect/look up to and why?

I aspire to Mike Bolte’s calmness. Jerry Nelson was an inspirational figure, and from earlier in my career, Robert Leighton had brilliant ideas and was also a wonderful mentor. Richard Feynman had a unique, creative way of looking at questions in physics.

Within your field, what area fascinates you most and why?

I am fascinated by the cores of galaxies, where giant black holes lurk, sometimes in the dark, barely revealing themselves, and sometimes in a glorious display of brightness and energy, as a quasar.

Another exciting field is how much we can tell about a planet that we see moving across the face of its parent star. In principle, we can tell the composition of its atmosphere, whether it has clouds, whether there are moons orbiting it, and more.

What has been your most rewarding success/accomplishment to-date?

One morning, after I had gone to sleep after a night of observing at the McDonald Observatory in West Texas, I had a dream about a polarizing element that we had been designing. The challenge was that it had to work over a wide range of wavelengths. In the dream I realized that I could take an existing design and modify the geometry to produce what we needed. “It’s all just geometry,” I remember thinking. I woke up from the dream and told myself, this is important. I started drifting back to sleep, and then shot bolt upright, thinking, “this is REALLY important! I need to write this down before I forget.” This optic became the core of polarimetry instruments at McDonald, Keck, and Palomar observatories.

Another truly rewarding success was running science operations at Keck Observatory. I had a great team, and the teamwork at the Observatory in general was fantastic. Working with a wide range of scientists and science programs was more fulfilling to me than working on my own narrow research field. I hope to help reproduce this camaraderie and environment for GMT operations, and to streamline the challenging jobs of the future operations staff so they can enjoy the ride like I have.

What has been your most surprising moment within your career?

When I discovered that the Duck Nebula, V645 Cygni, had lost its beak! In 1988, I published a paper on this young star and the gas cloud surrounding it. I showed images in which it looked like a duck seen in profile, with a narrow, straight beak. When I looked at it with the Keck telescope a couple of decades later, that beak had disappeared! I showed that it was a beam of light sneaking out past the dust around the star. Apparently that dust rearranged itself in the intervening years to block that beam of light.

A second surprising moment came when I first realized I had made a discovery that very few people in the world knew about. Suddenly I realized that I was a world-class expert on something!

What was your initial impression of GMTO and why did you get involved?

The lure of helping to develop one of the next-generation telescopes was too strong to resist. GMTO was started by a visionary team of scientists and designers. When I was hired, many experts from around the world were being assembled to carry on the project, including people I knew and respected from earlier in my life. I knew that switching from operations to a design and build project would help me grow, and that the discoveries that the telescope would eventually make would make me proud and satisfied that I could participate in even a small way.

Share a non-science related talent/skill/interest/hobby that you have.

I used to be an avid volleyball player. I also played basketball in college and subsequently.

What advice would you give to young kids exploring STEM fields as careers?

Enjoy the thrill of discovery. At first you can enjoy it through learning about the discoveries of others, like Einstein, Feynman and Edison. Before you know it, you will be making your own discoveries. Keep up your math and computer skills, as these will serve you well in your career. And look for opportunities to get involved in STEM programs and projects early.

Categories: GMT News

Astronomy at Home

Fri, 03/27/2020 - 02:50

Astronomy is the perfect activity to do from home – both indoors and outdoors. Read below for some ideas from GMTO’s partner institutions, and others, to keep you and your family informed and entertained.

Backyard Stargazing

Star Trails over McDonald Observatory. Image credit: John Stephen Chandler.

Enjoy the great outdoors from home by taking your stargazing skills into the backyard. The McDonald Observatory of GMTO partner institution, the University of Texas at Austin, offers weekly stargazing tips. You can also find some great pointers from NASA Science, offering skywatching tips with a daily guide on what to look for. Look out for the brilliant “evening star,” Venus, in the western sky this month.

If you want to spot the International Space Station going overhead, check out this resource from NASA.

Tune In

Get to know the cosmos by tuning in to the Planetary Society’s weekly podcast, Planetary Radio, with Mat Kaplan, showcasing space science and exploration. Check out their 2018 Astronomy Day episode featuring GMT! You can also learn more about GMT in featured episodes on other podcasts including Space Junk, the BBC, syzygy, and Deep Astronomy.

Virtual Learning

Image courtesy: Carnegie Institution

Last week, GMTO partner institution Arizona State University launched ASU For You, a learning resource center offering digital education assets for both learners and educators. Explore ASU’s Infiniscope website or, if you are an educator, join the community for free access to earth and space exploration lessons using simulations and virtual field trips to help educators engage learners with interactive coursework and videos.

Created by the Smithsonian Center for Learning and Digital Access, the Smithsonian Learning Lab offers digital learning materials sourced from across the Smithsonian’s 19 museums, 9 major research centers, and even the National Zoo! For educators and learners alike, the Learning Lab allows you to explore your interests and create your own personalized collections. Our favorite topical collection to browse is the Astronomy Learning Resources.

GMTO partner institution, Carnegie Institution for Science, offers its series of virtual events featuring monthly lectures. Check out last month’s event, Astronomy in 2020: The Great Debates Today, hosted by Carnegie Director, John Mulchaey, as he unpacks the latest and greatest questions astronomers are asking about the mysteries of the universe!

Activities Reimagined Online

Panoramic view of the James S. McDonnell Space Hangar at the National Air and Space Museum’s Steven F. Udvar-Hazy Center, September 6, 2013. Space Shuttle Discovery (OV-103) (A20120325000) can be seen in the center. Image Credit: Smithsonian

One of our favorite museums to virtually visit is the Smithsonian National Air and Space Museum, which maintains the world’s largest collection of aviation and space artifacts.

The Royal Museums Greenwich (home of the famous Greenwich Observatory in London, UK) offers a selection of online stories and guides in their digital collections. Our favorite theme to explore is Space and Stargazing, featuring a variety of space and discovery stories including their 2020 guide on how and when to watch a meteor shower and how to get started in astrophotography.

Categories: GMT News

Enero 2020 – Español

Wed, 01/08/2020 - 01:50
Contenidos Saludo y Revisión del año en GMTO

¡El equipo del Telescopio Magallanes Gigante les desea un excelente 2020!

Para GMTO, el 2019 fue un año muy productivo.

A comienzos del año, se completó la excavación de los cimientos para el enorme pilar y la cúpula del telescopio. El trabajo demoró sólo seis meses durante los cuales se hicieron 469 cargas de tierra y rocas en camiones que fueron transportadas desde la cumbre al centro de acopio en el sitio. El resto del año, se trabajó en la mejora de los sistemas de distribución de agua y electricidad, el cual ya está casi terminado.

En mayo, se llevó a cabo una profunda evaluación externa del proyecto, tanto de sus planes técnicos y financieros, como de sus cronogramas. Los resultados de la evaluación fueron muy positivos, lo que llevó al Comité de Evaluación a concluir que el plan fijado es realista y que el equipo actual es capaz de llevar al GMT a un buen término.

El Laboratorio de Espejos de Richard F. Caris ha logrado un excelente avance con los espejos del GMT. En julio se terminó el espejo #2, el que fue enviado desde el Laboratorio de Espejos al lugar de almacenamiento, cerca del Aeropuerto de Tucson, donde ya se encuentra el espejo #1, finalizado el año 2017. Actualmente, el espejo #3 se encuentra en el proceso de pulido de su superficie frontal y el espejo #5 en el proceso de pulido de su superficie trasera. Esperamos que los trabajos en la superficie frontal del espejo #4 (el espejo central) comiencen una vez que el espejo #3 esté terminado, dado que la torre de testeo necesitará ser reconfigurada para ajustarse al eje del este espejo.

Finalmente, como podrán leer más adelante, el proyecto GMTO anunció la firma del contrato para la estructura del telescopio (también llamada “montura”). Después de una búsqueda de dos años, MT Mechatronics e Ingersoll Machine Tools fueron seleccionadas para completar el diseño y luego la fabricación de la montura, respectivamente, para finalmente el año 2025 enviarla al sitio de GMT en Chile.

Esperamos compartir nuestros progresos durante el 2020 y ver a varios de ustedes en la Conferencia de la AAS en enero.

– Dr. James Fanson, Gerente de Proyecto de GMTO

Volver arriba

El Telescopio Magallanes Gigante firma el contrato para la estructura del telescopio

Perfil de la estructura del telescopio GMT y sus cimientos. El cilindro gris en la base es el pilar del telescopio, con sus cimientos de concreto. El aro más amplio de color naranja, representa el piso de observación en la cúpula. La estructura gris semi circular justo encima se llama el Aro-C. Las estructuras celestes son las celdas que sostendrán los espejos primarios y sus mecanismos de soporte. Finalmente, la punta del armazón sostiene el conjunto del espejo secundario. Más imágenes aquí.

A fines de Octubre, GMTO anunció la firma un contrato con la compañía alemana MT Mechatronics (MTM) y la compañía de Illinois Ingersoll Machine Tools (IMT), para diseñar, construir e instalar la estructura del telescopio de GMT. La estructura pesará 1.800 toneladas y sostendrá los siete espejos gigantes del GMT, los instrumentos científicos y los espejos secundarios, haciendo que su peso total alcance las 2.100 toneladas. Esta masa completa “flotará” en un rodamiento hidrostático formado por una capa de aceite de solo 50 micrones de grosor, diseñados con la más alta precisión.

La estructura del telescopio será diseñada por MT Mechatronics y manufacturada, construida y testeada por Ingersoll antes de ser enviada e instalada en el sitio del GMT, ubicado en la Cordillera de los Andes en Chile.

MT Mechatronics tiene más de 50 años de experiencia con telescopios, comenzando con el Radiotelescopio Parkes en Australia. Fue el diseñador de la montura para el Telescopio Solar Daniel K. Inouye (DKIST) en Hawai.

Desde su creación en 1891, Ingersoll Machine Tools Inc. ha sido un nombre reconocido en el área de máquinas fresadoras y tiene décadas de experiencia en la fabricación de precisas estructuras de acero, incluyendo la reciente asociación con MT Mechatronics en la construcción de la montura del telescopio DKIST.

El valor total del contrato de la estructura del telescopio es de 135 millones de dólares y su ejecución tomará nueve años de exhaustivo trabajo por parte de ingenieros, diseñadores, obreros metalúrgicos y mecánicos. Se espera que la estructura llegue a Chile a fines de 2025 y que esté lista para los acomodar los espejos en 2028.

A principios de noviembre, los equipos de MTM y IMT visitaron GMTO en Pasadena para la puesta en marcha del contrato. En esta primera reunión se tomaron decisiones de diseño para minimizar el riesgo sísmico y las interfaces entre la estructura del telescopio y la cúpula.

Ingenieros y Gerentes de MT Mechatronics, Ingersoll Machine Tools y GMTO.

Volver arriba

7ma Conferencia Científica Anual de la Comunidad GMT

Asistentes a la 7ma Conferencia Científica Anual de la Comunidad GMT.

El 19 y 21 de septiembre, GMTO llevó a cabo su 7ma Conferencia Científica Anual de la Comunidad sobre el tema “The Cosmic Baryon Cycle” en Carlsbad, California. El “baryon cycle” trata de los ciclos continuos de gas hacia el interior de las galaxias por la fuerza de gravedad, y que es expulsado nuevamente debido a explosiones de supernovas, los jets desde objetos en acreción, entre otros efectos. Este ciclo ocurre en todas las etapas evolutivas de las galaxia a través de la historia del universo, gobierna el ritmo en que las galaxias pueden formar estrellas e influyen en la forma que adopta.

Recibimos más de 100 asistentes de todo el mundo y en diferentes etapas de sus carreras. Muchas de las charlas en la conferencia mencionaron la necesidad de contar con mayor resolución para la observación espacial y espectral de galaxias con distintos desplazamientos al rojo, lo que posible con los instrumentos del GMT. Durante la sesión de preguntas y respuestas, conducida por Rebecca Bernstein, Gerente Científica del Proyecto GMT, se expresó mucho interés en el Programa del Telescopio Extremadamente Grande de Estados Unidos.

Esperamos con entusiasmo recibir a la comunidad en la próxima conferencia en septiembre 2020, en Sedona, Arizona, para abordar el tema de los agujeros negros de todas las escalas.

Volver arriba

Patrick McCarthy asume como nuevo Director del Laboratorio OIR de la NSF

Dr. Patrick McCarthy

El 1 de Octubre, el Vice Presidente del Telescopio Magallanes Gigante, Patrick McCarthy asumió el importante papel de Director en el Laboratorio Nacional para la Investigación en Astronomía Óptica-Infrarroja de NSF (Laboratorio OIR de NSF), recientemente fundado.

El Dr. McCarthy ha sido parte del proyecto GMT desde sus inicios, 15 años atrás, y ayudó a llevarlo desde un dibujo en una servilleta a una organización de más de 100 personas, con doce instituciones estadounidenses e internacionales. El 2008, tras 20 años en su cargo en Carnegie, el Dr. McCarthy oficialmente expandió su rol aceptando una posición de liderazgo en GMT.

En el año 2014, trabajando en ese entonces con la directora Wendy Freedman y otros integrantes de los Observatorios Carnegie, así como también con otras organizaciones asociadas de GMT, el Dr. McCarthy ayudó a lograr un análisis de diseño preliminar del telescopio, creando la base para que en el año 2015, el Consejo de GMT aportara más de 500 millones de dólares en financiamiento por parte de los colaboradores del proyecto para su construcción inicial. Su convicción para convencer a los demás de la necesidad científica de construir un telescopio óptico-infrarrojo de última generación para la comunidad astronómica ha sido clave para el éxito del proyecto hasta la fecha.

Desde el Laboratorio OIR de NSF, el Dr. McCarthy continúa promoviendo inversiones federales en el GMT y el Telescopio de Treinta Metros como parte del Programa de Telescopios Extremadamente Grandes de Estados Unidos. Asimismo se encuentra trabajando en el Decadal Survey para apoyar su evaluación del programa del ELT de EE.UU. como parte de su proceso para fijar prioridades para las inversiones federales en astronomía para la próxima década.

GMTO y los Observatorios Carnegie ofrecieron una despedida a Pat a comienzos de noviembre de 2019.

Volver arriba

Conferencia de la Sociedad Astronómica Americana

El Proyecto del Telescopio Magallanes Gigante está presente en la 235ta Conferencia de la Sociedad Astronómica Americana en Honolulu, Hawai, como parte del Programa del Telescopio Extremadamente Grande de los Estados Unidos (US-ELTP). El US-ELTP es una asociación entre GMT, el Telescopio de Treinta Metros (TMT) y el Laboratorio Nacional de Investigación para la Astronomía Óptica- Infrarroja de NSF (NOIR).

El objetivo del US-ELTP es permitir el acceso a todos los científicos de los Estados Unidos a la próxima generación de telescopios ópticos-infrarrojos mediante la contribución de NSF. A través de US-ELTP, todos los astrónomos en los Estados Unidos tendrán acceso al 25% o más, del tiempo de observación en el GMT y el TMT, independientemente de sus afiliaciones institucionales. Un programa de ELT bi-hemisférico permitirá descubrimientos de vanguardia en astrofísica en la era de los telescopios gigantes, permitiendo ejecutar observaciones con más noches, mejor alcance del cielo, y el más amplio conjunto de instrumentos que otros observatorios no podrían proporcionar.

El US-ELTP tiene un estand en la sala de exhibiciones y es anfitrión de dos encuentros con la comunidad: primero una sesión de Puertas Abiertas que se realizó domingo 5 de enero, y luego una serie de presentaciones sobre el programa, observatorios y la ciencia el martes 7 de enero, a las 10:00am.

Volver arriba

El Laboratorio Móvil de Astronomía ya está recorriendo Chile

Estudiantes visitan el Laboratorio Móvil de Astronomía en la 5ta Cumbre de la Red Chilena de Educación y Difusión de Astronomía en Temuco, Chile.

Estamos muy satisfechos con los primeros seis meses de operaciones en Chile del Laboratorio Móvil de Astronomía, un proyecto financiado por GMTO en colaboración con la Fundación EcoScience, la embajada de Estados Unidos en Chile y la Fundación Kavli.

Visitamos diez escuelas y una feria científica comunitaria en la Región Metropolitana, y una cumbre de educación de la astronomía en la Región de la Araucanía, la zona dónde será el eclipse solar total en el año 2020.

Más de 2.300 estudiantes, desde enseñanza básica hasta media, experimentaron la innovadora propuesta de educación de la ciencia desarrollada por la Fundación EcoScience para hacer más accesible la astronomía en los lugares más aislados del país. Además, cerca de 130 profesores tuvieron la oportunidad de participar en actividades indagatorias con sus estudiantes y adquirir nuevas estrategias de enseñanza de la ciencias en la sala de clases.

Durante la 5ta Cumbre de la Red Chilena de Educación y Difusión de Astronomía, el público de la Región de la Araucanía tuvo la oportunidad de visitar y participar en las actividades del laboratorio móvil de astronomía, como también disfrutar de un audiovisual en el planetario inflable donado por la embajada de Estados Unidos al Laboratorio Móvil de Astronomía. El audiovisual proyectado fue “Eclipse: un juego de luz y sombra”, una producción original del Planetario de Santiago, que fue cedida gratuitamente para la cumbre.

Ahora estamos trabajando en la ruta y actividades para el Eclipse Solar Total de diciembre de 2020 en La Araucanía y Los Lagos. Puedes seguir todas las novedades sobre nuestro programa para el eclipse en Facebook y Twitter.

Volver arriba

Categories: GMT News

Top Astronomy Stories of 2019

Fri, 12/20/2019 - 03:52
First images of a black hole captured by the Event Horizon Telescope

Evidence of the supermassive black hole in the center of Messier 87 and its shadow. Credit: Event Horizon Telescope Collaboration.

In April, the Event Horizon Telescope (EHT) project announced they had taken the first-ever image of a black hole. The image, a glowing orange donut around a central black circle, showed the black hole at the center of the M87 galaxy, 55 million light-years from Earth. This black hole has a mass 6.5 billion times that of the Sun. The image opens a new window into the study of black holes.

The EHT is an international collaboration of eight radio telescopes around the world that work together to collect data. The EHT has been funded in part by the National Science Foundation. Several of GMTO’s partner institutions are involved in the EHT, including Harvard University, Smithsonian Astrophysical Observatory, the University of Arizona and the University of Chicago.

Total Solar Eclipse in Chile

The diamond ring effect. Credit: GMTO Project Manager, James Fanson.

On July 2, eclipse chasers from around the world gathered in Chile and Argentina to experience a total solar eclipse. Fortuitously the path of the eclipse crossed an area of Chile containing many world-class optical observatories. GMTO’s construction site was only half a kilometer from the path of totality, and we partnered with the Carnegie Institution to bring guests for a party in the desert. Many of our guests had never seen a total solar eclipse before, making the experience very special. The next total solar eclipse will take place on December 14, 2020, and will be visible in the far south of Chile. GMTO will again be taking special guests to view the eclipse.

A new measurement suggests the universe is expanding faster than we thought

The red giant stars used in the measurement of the expansion rate of the universe (circled in yellow). More details here. Credit: NASA, ESA, W. Freedman (University of Chicago), ESO, and the Digitized Sky Survey.

In July, astronomers announced they had measured the expansion rate of the universe in an entirely new way, to try to resolve a discrepancy between two previous results.

The measurement was carried out using the Hubble Space Telescope by a team led by former GMTO Board Chair, and Professor of Astronomy at the University of Chicago, Prof. Wendy Freedman along with collaborators from the Carnegie Institution for Science. They measured the brightness of red giant stars in distant galaxies and compared them to the brightness of similar red giants in nearby galaxies. The difference in brightness gives an indication of distance, which can be combined with other measurements to reveal the expansion rate of the universe.

The new result sits between the previous results, leaving open the question as to whether astronomers need to revise their explanation for the birth and growth of the universe.

Interstellar visitor Comet 2I/Borisov

Comet 2l/Borisov with a background galaxy. The galaxy’s bright central core is smeared in the image because Hubble was tracking the comet. Borisov was approximately 326 million kilometers from Earth in this exposure. Credit: NASA, ESA, and D. Jewitt (UCLA)

In October, the first-ever interstellar comet was spotted in our solar system. In December it made its closest approach to the Sun where the Hubble Space Telescope took its photograph. The comet was first seen by Crimean amateur astronomer Gennady Borisov in August. Images from the Hubble Space Telescope show the nucleus of the comet is just half a kilometer across, and observations from numerous telescope show that it has a very similar chemical composition to comets that originate in our solar system, providing evidence that comets also form around other stars.

Nobel Prize in Physics

Artist’s impression of first exoplanet discovery 51 Pegasi b. Credit: ESO/M. Kornmesser/Nick Risinger (skysurvey.org)

This year’s Nobel Prize in Physics was awarded to three scientists who collectively reshaped our understanding of the universe and our place within it. Half of the prize was awarded to physical cosmologist, James Peebles, for developing the theoretical framework that forms the basis of modern cosmology. The other half was awarded to Michel Mayor and Didier Queloz for the first discovery, in 1995, of a planet outside our solar system, named 51 Pegasi b. This discovery has paved the way for the more than 4,000 exoplanets discovered to date.

Categories: GMT News

Pages